ମୂଲ୍ୟାୟନ କରିବା
54
ଗୁଣକ
2\times 3^{3}
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\left(10\sqrt{6}+\sqrt{6}-\sqrt{24}\right)\sqrt{6}
ଗୁଣନିୟକ 600=10^{2}\times 6. ସ୍କେୟାର୍ ରୁଟ୍ \sqrt{10^{2}}\sqrt{6} ର ଉତ୍ପାଦଭାବରେ ଉତ୍ପାଦ \sqrt{10^{2}\times 6} ର ସ୍କେୟାର୍ ରୁଟ୍ ପୁଣି ଲେଖନ୍ତୁ. 10^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
\left(11\sqrt{6}-\sqrt{24}\right)\sqrt{6}
11\sqrt{6} ପାଇବାକୁ 10\sqrt{6} ଏବଂ \sqrt{6} ସମ୍ମେଳନ କରନ୍ତୁ.
\left(11\sqrt{6}-2\sqrt{6}\right)\sqrt{6}
ଗୁଣନିୟକ 24=2^{2}\times 6. ସ୍କେୟାର୍ ରୁଟ୍ \sqrt{2^{2}}\sqrt{6} ର ଉତ୍ପାଦଭାବରେ ଉତ୍ପାଦ \sqrt{2^{2}\times 6} ର ସ୍କେୟାର୍ ରୁଟ୍ ପୁଣି ଲେଖନ୍ତୁ. 2^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
9\sqrt{6}\sqrt{6}
9\sqrt{6} ପାଇବାକୁ 11\sqrt{6} ଏବଂ -2\sqrt{6} ସମ୍ମେଳନ କରନ୍ତୁ.
9\times 6
6 ପ୍ରାପ୍ତ କରିବାକୁ \sqrt{6} ଏବଂ \sqrt{6} ଗୁଣନ କରନ୍ତୁ.
54
54 ପ୍ରାପ୍ତ କରିବାକୁ 9 ଏବଂ 6 ଗୁଣନ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}