ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ଗୁଣକ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

det(\left(\begin{matrix}4&3&-1\\5&-3&3\\-5&1&-2\end{matrix}\right))
କର୍ଣ୍ଣ ପଦ୍ଧତି ବ୍ୟବହାର କରି ମ୍ୟାଟ୍ରିକ୍ସର ଡେଟରମିନାଣ୍ଟ ବାହାର କରନ୍ତୁ.
\left(\begin{matrix}4&3&-1&4&3\\5&-3&3&5&-3\\-5&1&-2&-5&1\end{matrix}\right)
ପ୍ରଥମ ଦୁଇଟି ସ୍ତମ୍ଭକୁ ଚତୁର୍ଥ ଏବଂ ପଞ୍ଚମ ସ୍ତମ୍ଭ ଭାବେ ଦୋହରାଇବା ଦ୍ୱାରା ମୂଳ ମ୍ୟାଟ୍ରିକ୍ସ ବୃଦ୍ଧି କରନ୍ତୁ.
4\left(-3\right)\left(-2\right)+3\times 3\left(-5\right)-5=-26
ଉପର ବାମ ଏଣ୍ଟ୍ରିରେ ପ୍ରାରମ୍ଭ କରି, କର୍ଣ୍ଣଗୁଡିକ ସହିତ ତଳକୁ ଗୁଣନ କରନ୍ତୁ, ଏବଂ ପରିଣାମାତ୍ମକ ଉତ୍ପାଦଗୁଡିକ ଯୋଡନ୍ତୁ.
-5\left(-3\right)\left(-1\right)+3\times 4-2\times 5\times 3=-33
ନିମ୍ନ ବାମ ଏଣ୍ଟ୍ରିରେ ପ୍ରାରମ୍ଭ କରି, କର୍ଣ୍ଣଗୁଡିକ ସହିତ ତଳକୁ ଗୁଣନ କରନ୍ତୁ, ଏବଂ ପରିଣାମାତ୍ମକ ଉତ୍ପାଦଗୁଡିକ ଯୋଡନ୍ତୁ.
-26-\left(-33\right)
ନିମ୍ନମୁଖୀ କର୍ଣ୍ଣ ଉତ୍ପାଦଗୁଡିକର ସମଷ୍ଟିରୁ ଉର୍ଦ୍ଧ୍ୱମୁଖୀ କର୍ଣ୍ଣ ଉତ୍ପାଦଗୁଡିକର ସମଷ୍ଟି ବିୟୋଗ କରନ୍ତୁ.
7
-26 ରୁ -33 ବିୟୋଗ କରନ୍ତୁ.
det(\left(\begin{matrix}4&3&-1\\5&-3&3\\-5&1&-2\end{matrix}\right))
ଗୌଣ ସଂଖ୍ୟାଗୁଡିକ ଦ୍ୱାରା ବିସ୍ତାର ପଦ୍ଧତି ବ୍ୟବହାର କରି ମ୍ୟାଟ୍ରିକ୍ସର ଡେଟରମିନାଣ୍ଟ ବାହାର କରନ୍ତୁ (କୋଫ୍ୟାକ୍ଟରଗୁଡିକ ଦ୍ୱାରା ବିସ୍ତାର ଭାବେ ମଧ୍ୟ ଜଣାଶୁଣା).
4det(\left(\begin{matrix}-3&3\\1&-2\end{matrix}\right))-3det(\left(\begin{matrix}5&3\\-5&-2\end{matrix}\right))-det(\left(\begin{matrix}5&-3\\-5&1\end{matrix}\right))
ଗୌଣ ସଂଖ୍ୟାଗୁଡିକୁ ବୃଦ୍ଧି କରିବାକୁ, ପ୍ରଥମ ଧାଡିର ପ୍ରତିଟି ଉପାଦାନକୁ ଏହାର ଗୌଣ ସଂଖ୍ୟା ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, ଯାହାକି ସେହି ଉପାଦାନ ଧାରଣ କରିଥିବା ଧାଡି ଓ ସ୍ତମ୍ଭକୁ ବିଲୋପ କରିବା ଦ୍ୱାରା ସୃଷ୍ଟି ହୋଇଥିବା 2\times 2 ମ୍ୟାଟ୍ରିକ୍ସର ଡେଟରମିନାଣ୍ଟ ହୋଇଥାଏ, ତାପରେ ଉପାଦାନର ଅବସ୍ଥାନ ଚିହ୍ନ ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
4\left(-3\left(-2\right)-3\right)-3\left(5\left(-2\right)-\left(-5\times 3\right)\right)-\left(5-\left(-5\left(-3\right)\right)\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right) ପାଇଁ, ad-bc ହେଉଛି ଡିଟରମିନାଣ୍ଟ.
4\times 3-3\times 5-\left(-10\right)
ସରଳୀକୃତ କରିବା.
7
ଚୁଡାନ୍ତ ଫଳାଫଳ ହାସଲ କରିବା ପାଇଁ ପଦଗୁଡିକ ଯୋଡନ୍ତୁ.