\left\{ \begin{array} { l } { y = - \frac { 3 } { 4 } x + \frac { 3 } { 4 } } \\ { y = \frac { 4 } { 3 } x + \frac { 11 } { 3 } } \end{array} \right.
y, x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x = -\frac{7}{5} = -1\frac{2}{5} = -1.4
y = \frac{9}{5} = 1\frac{4}{5} = 1.8
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
y+\frac{3}{4}x=\frac{3}{4}
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଉଭୟ ପାର୍ଶ୍ଵକୁ \frac{3}{4}x ଯୋଡନ୍ତୁ.
y-\frac{4}{3}x=\frac{11}{3}
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{4}{3}x ବିୟୋଗ କରନ୍ତୁ.
y+\frac{3}{4}x=\frac{3}{4},y-\frac{4}{3}x=\frac{11}{3}
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
y+\frac{3}{4}x=\frac{3}{4}
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ y କୁ ପୃଥକ୍ କରିବା ଦ୍ୱାରା y ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
y=-\frac{3}{4}x+\frac{3}{4}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{3x}{4} ବିୟୋଗ କରନ୍ତୁ.
-\frac{3}{4}x+\frac{3}{4}-\frac{4}{3}x=\frac{11}{3}
ଅନ୍ୟ ସମୀକରଣ, y-\frac{4}{3}x=\frac{11}{3} ରେ y ସ୍ଥାନରେ \frac{-3x+3}{4} ପ୍ରତିବଦଳ କରନ୍ତୁ.
-\frac{25}{12}x+\frac{3}{4}=\frac{11}{3}
-\frac{3x}{4} କୁ -\frac{4x}{3} ସହ ଯୋଡନ୍ତୁ.
-\frac{25}{12}x=\frac{35}{12}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{3}{4} ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{7}{5}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ -\frac{25}{12} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
y=-\frac{3}{4}\left(-\frac{7}{5}\right)+\frac{3}{4}
y=-\frac{3}{4}x+\frac{3}{4} ରେ x ପାଇଁ -\frac{7}{5} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ y ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
y=\frac{21}{20}+\frac{3}{4}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା -\frac{3}{4} କୁ -\frac{7}{5} ଥର ଗୁଣନ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
y=\frac{9}{5}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{21}{20} ସହିତ \frac{3}{4} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
y=\frac{9}{5},x=-\frac{7}{5}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
y+\frac{3}{4}x=\frac{3}{4}
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଉଭୟ ପାର୍ଶ୍ଵକୁ \frac{3}{4}x ଯୋଡନ୍ତୁ.
y-\frac{4}{3}x=\frac{11}{3}
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{4}{3}x ବିୟୋଗ କରନ୍ତୁ.
y+\frac{3}{4}x=\frac{3}{4},y-\frac{4}{3}x=\frac{11}{3}
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}1&\frac{3}{4}\\1&-\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4}\\\frac{11}{3}\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}1&\frac{3}{4}\\1&-\frac{4}{3}\end{matrix}\right))\left(\begin{matrix}1&\frac{3}{4}\\1&-\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{4}\\1&-\frac{4}{3}\end{matrix}\right))\left(\begin{matrix}\frac{3}{4}\\\frac{11}{3}\end{matrix}\right)
\left(\begin{matrix}1&\frac{3}{4}\\1&-\frac{4}{3}\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{4}\\1&-\frac{4}{3}\end{matrix}\right))\left(\begin{matrix}\frac{3}{4}\\\frac{11}{3}\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&\frac{3}{4}\\1&-\frac{4}{3}\end{matrix}\right))\left(\begin{matrix}\frac{3}{4}\\\frac{11}{3}\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରିକ୍ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{\frac{4}{3}}{-\frac{4}{3}-\frac{3}{4}}&-\frac{\frac{3}{4}}{-\frac{4}{3}-\frac{3}{4}}\\-\frac{1}{-\frac{4}{3}-\frac{3}{4}}&\frac{1}{-\frac{4}{3}-\frac{3}{4}}\end{matrix}\right)\left(\begin{matrix}\frac{3}{4}\\\frac{11}{3}\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{16}{25}&\frac{9}{25}\\\frac{12}{25}&-\frac{12}{25}\end{matrix}\right)\left(\begin{matrix}\frac{3}{4}\\\frac{11}{3}\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{16}{25}\times \frac{3}{4}+\frac{9}{25}\times \frac{11}{3}\\\frac{12}{25}\times \frac{3}{4}-\frac{12}{25}\times \frac{11}{3}\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{9}{5}\\-\frac{7}{5}\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
y=\frac{9}{5},x=-\frac{7}{5}
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ y ଏବଂ x ବାହାର କରନ୍ତୁ.
y+\frac{3}{4}x=\frac{3}{4}
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଉଭୟ ପାର୍ଶ୍ଵକୁ \frac{3}{4}x ଯୋଡନ୍ତୁ.
y-\frac{4}{3}x=\frac{11}{3}
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{4}{3}x ବିୟୋଗ କରନ୍ତୁ.
y+\frac{3}{4}x=\frac{3}{4},y-\frac{4}{3}x=\frac{11}{3}
ଭାରିଏବୁଲ୍ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
y-y+\frac{3}{4}x+\frac{4}{3}x=\frac{3}{4}-\frac{11}{3}
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା y+\frac{3}{4}x=\frac{3}{4} ଠାରୁ y-\frac{4}{3}x=\frac{11}{3} କୁ ବିୟୋଗ କରନ୍ତୁ.
\frac{3}{4}x+\frac{4}{3}x=\frac{3}{4}-\frac{11}{3}
y କୁ -y ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ y ଏବଂ -y ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{25}{12}x=\frac{3}{4}-\frac{11}{3}
\frac{3x}{4} କୁ \frac{4x}{3} ସହ ଯୋଡନ୍ତୁ.
\frac{25}{12}x=-\frac{35}{12}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା -\frac{11}{3} ସହିତ \frac{3}{4} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
x=-\frac{7}{5}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \frac{25}{12} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
y-\frac{4}{3}\left(-\frac{7}{5}\right)=\frac{11}{3}
y-\frac{4}{3}x=\frac{11}{3} ରେ x ପାଇଁ -\frac{7}{5} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ y ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
y+\frac{28}{15}=\frac{11}{3}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା -\frac{4}{3} କୁ -\frac{7}{5} ଥର ଗୁଣନ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
y=\frac{9}{5}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{28}{15} ବିୟୋଗ କରନ୍ତୁ.
y=\frac{9}{5},x=-\frac{7}{5}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}