ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x, y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x+my=a,x+\left(-n\right)y=b
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍‌ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍‌ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍‌ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
x+my=a
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ x କୁ ପୃଥକ୍‌ କରିବା ଦ୍ୱାରା x ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
x=\left(-m\right)y+a
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ my ବିୟୋଗ କରନ୍ତୁ.
\left(-m\right)y+a+\left(-n\right)y=b
ଅନ୍ୟ ସମୀକରଣ, x+\left(-n\right)y=b ରେ x ସ୍ଥାନରେ a-my ପ୍ରତିବଦଳ କରନ୍ତୁ.
\left(-m-n\right)y+a=b
-my କୁ -ny ସହ ଯୋଡନ୍ତୁ.
\left(-m-n\right)y=b-a
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ a ବିୟୋଗ କରନ୍ତୁ.
y=-\frac{b-a}{m+n}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -m-n ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\left(-m\right)\left(-\frac{b-a}{m+n}\right)+a
x=\left(-m\right)y+a ରେ y ପାଇଁ -\frac{b-a}{m+n} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
x=\frac{m\left(b-a\right)}{m+n}+a
-m କୁ -\frac{b-a}{m+n} ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{bm+an}{m+n}
a କୁ \frac{m\left(b-a\right)}{m+n} ସହ ଯୋଡନ୍ତୁ.
x=\frac{bm+an}{m+n},y=-\frac{b-a}{m+n}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.
x+my=a,x+\left(-n\right)y=b
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍‌ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}1&m\\1&-n\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}a\\b\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}1&m\\1&-n\end{matrix}\right))\left(\begin{matrix}1&m\\1&-n\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&m\\1&-n\end{matrix}\right))\left(\begin{matrix}a\\b\end{matrix}\right)
\left(\begin{matrix}1&m\\1&-n\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&m\\1&-n\end{matrix}\right))\left(\begin{matrix}a\\b\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍‌ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&m\\1&-n\end{matrix}\right))\left(\begin{matrix}a\\b\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରି‌କ୍‌ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{n}{-n-m}&-\frac{m}{-n-m}\\-\frac{1}{-n-m}&\frac{1}{-n-m}\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{n}{m+n}&\frac{m}{m+n}\\\frac{1}{m+n}&\frac{1}{-m-n}\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{n}{m+n}a+\frac{m}{m+n}b\\\frac{1}{m+n}a+\frac{1}{-m-n}b\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{bm+an}{m+n}\\\frac{a-b}{m+n}\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
x=\frac{bm+an}{m+n},y=\frac{a-b}{m+n}
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ x ଏବଂ y ବାହାର କରନ୍ତୁ.
x+my=a,x+\left(-n\right)y=b
ଭାରିଏବୁଲ୍‌ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍‌ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍‌ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
x-x+my+ny=a-b
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା x+my=a ଠାରୁ x+\left(-n\right)y=b କୁ ବିୟୋଗ କରନ୍ତୁ.
my+ny=a-b
x କୁ -x ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ x ଏବଂ -x ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\left(m+n\right)y=a-b
my କୁ ny ସହ ଯୋଡନ୍ତୁ.
y=\frac{a-b}{m+n}
ଉଭୟ ପାର୍ଶ୍ୱକୁ m+n ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x+\left(-n\right)\times \frac{a-b}{m+n}=b
x+\left(-n\right)y=b ରେ y ପାଇଁ \frac{a-b}{m+n} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
x-\frac{n\left(a-b\right)}{m+n}=b
-n କୁ \frac{a-b}{m+n} ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{bm+an}{m+n}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{n\left(a-b\right)}{m+n} ଯୋଡନ୍ତୁ.
x=\frac{bm+an}{m+n},y=\frac{a-b}{m+n}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.