ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x, y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

2x+2y=10,\frac{1}{2}x+\frac{3}{4}y=20
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍‌ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍‌ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍‌ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
2x+2y=10
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ x କୁ ପୃଥକ୍‌ କରିବା ଦ୍ୱାରା x ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
2x=-2y+10
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 2y ବିୟୋଗ କରନ୍ତୁ.
x=\frac{1}{2}\left(-2y+10\right)
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-y+5
\frac{1}{2} କୁ -2y+10 ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{1}{2}\left(-y+5\right)+\frac{3}{4}y=20
ଅନ୍ୟ ସମୀକରଣ, \frac{1}{2}x+\frac{3}{4}y=20 ରେ x ସ୍ଥାନରେ -y+5 ପ୍ରତିବଦଳ କରନ୍ତୁ.
-\frac{1}{2}y+\frac{5}{2}+\frac{3}{4}y=20
\frac{1}{2} କୁ -y+5 ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{1}{4}y+\frac{5}{2}=20
-\frac{y}{2} କୁ \frac{3y}{4} ସହ ଯୋଡନ୍ତୁ.
\frac{1}{4}y=\frac{35}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{5}{2} ବିୟୋଗ କରନ୍ତୁ.
y=70
ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
x=-70+5
x=-y+5 ରେ y ପାଇଁ 70 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
x=-65
5 କୁ -70 ସହ ଯୋଡନ୍ତୁ.
x=-65,y=70
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.
2x+2y=10,\frac{1}{2}x+\frac{3}{4}y=20
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍‌ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}2&2\\\frac{1}{2}&\frac{3}{4}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\20\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}2&2\\\frac{1}{2}&\frac{3}{4}\end{matrix}\right))\left(\begin{matrix}2&2\\\frac{1}{2}&\frac{3}{4}\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\\frac{1}{2}&\frac{3}{4}\end{matrix}\right))\left(\begin{matrix}10\\20\end{matrix}\right)
\left(\begin{matrix}2&2\\\frac{1}{2}&\frac{3}{4}\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\\frac{1}{2}&\frac{3}{4}\end{matrix}\right))\left(\begin{matrix}10\\20\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍‌ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&2\\\frac{1}{2}&\frac{3}{4}\end{matrix}\right))\left(\begin{matrix}10\\20\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରି‌କ୍‌ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{\frac{3}{4}}{2\times \frac{3}{4}-2\times \frac{1}{2}}&-\frac{2}{2\times \frac{3}{4}-2\times \frac{1}{2}}\\-\frac{\frac{1}{2}}{2\times \frac{3}{4}-2\times \frac{1}{2}}&\frac{2}{2\times \frac{3}{4}-2\times \frac{1}{2}}\end{matrix}\right)\left(\begin{matrix}10\\20\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}&-4\\-1&4\end{matrix}\right)\left(\begin{matrix}10\\20\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\times 10-4\times 20\\-10+4\times 20\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-65\\70\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
x=-65,y=70
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ x ଏବଂ y ବାହାର କରନ୍ତୁ.
2x+2y=10,\frac{1}{2}x+\frac{3}{4}y=20
ଭାରିଏବୁଲ୍‌ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍‌ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍‌ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
\frac{1}{2}\times 2x+\frac{1}{2}\times 2y=\frac{1}{2}\times 10,2\times \frac{1}{2}x+2\times \frac{3}{4}y=2\times 20
2x ଏବଂ \frac{x}{2} କୁ ସମାନ କରିବା ପାଇଁ, ପ୍ରଥମ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ପଦକୁ \frac{1}{2} ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ ଏବଂ ଦ୍ୱିତୀୟ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ଟର୍ମ୍‌କୁ 2 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
x+y=5,x+\frac{3}{2}y=40
ସରଳୀକୃତ କରିବା.
x-x+y-\frac{3}{2}y=5-40
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା x+y=5 ଠାରୁ x+\frac{3}{2}y=40 କୁ ବିୟୋଗ କରନ୍ତୁ.
y-\frac{3}{2}y=5-40
x କୁ -x ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ x ଏବଂ -x ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
-\frac{1}{2}y=5-40
y କୁ -\frac{3y}{2} ସହ ଯୋଡନ୍ତୁ.
-\frac{1}{2}y=-35
5 କୁ -40 ସହ ଯୋଡନ୍ତୁ.
y=70
ଉଭୟ ପାର୍ଶ୍ୱକୁ -2 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
\frac{1}{2}x+\frac{3}{4}\times 70=20
\frac{1}{2}x+\frac{3}{4}y=20 ରେ y ପାଇଁ 70 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
\frac{1}{2}x+\frac{105}{2}=20
\frac{3}{4} କୁ 70 ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{1}{2}x=-\frac{65}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{105}{2} ବିୟୋଗ କରନ୍ତୁ.
x=-65
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
x=-65,y=70
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.