ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
m, n ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

2m-3n=1,\frac{5}{3}m-2n=1
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍‌ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍‌ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍‌ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
2m-3n=1
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ m କୁ ପୃଥକ୍‌ କରିବା ଦ୍ୱାରା m ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
2m=3n+1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 3n ଯୋଡନ୍ତୁ.
m=\frac{1}{2}\left(3n+1\right)
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
m=\frac{3}{2}n+\frac{1}{2}
\frac{1}{2} କୁ 3n+1 ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{5}{3}\left(\frac{3}{2}n+\frac{1}{2}\right)-2n=1
ଅନ୍ୟ ସମୀକରଣ, \frac{5}{3}m-2n=1 ରେ m ସ୍ଥାନରେ \frac{3n+1}{2} ପ୍ରତିବଦଳ କରନ୍ତୁ.
\frac{5}{2}n+\frac{5}{6}-2n=1
\frac{5}{3} କୁ \frac{3n+1}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{1}{2}n+\frac{5}{6}=1
\frac{5n}{2} କୁ -2n ସହ ଯୋଡନ୍ତୁ.
\frac{1}{2}n=\frac{1}{6}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{5}{6} ବିୟୋଗ କରନ୍ତୁ.
n=\frac{1}{3}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
m=\frac{3}{2}\times \frac{1}{3}+\frac{1}{2}
m=\frac{3}{2}n+\frac{1}{2} ରେ n ପାଇଁ \frac{1}{3} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ m ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
m=\frac{1+1}{2}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{3}{2} କୁ \frac{1}{3} ଥର ଗୁଣନ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
m=1
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{1}{2} ସହିତ \frac{1}{2} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
m=1,n=\frac{1}{3}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.
2m-3n=1,\frac{5}{3}m-2n=1
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍‌ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}2&-3\\\frac{5}{3}&-2\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}2&-3\\\frac{5}{3}&-2\end{matrix}\right))\left(\begin{matrix}2&-3\\\frac{5}{3}&-2\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\\frac{5}{3}&-2\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
\left(\begin{matrix}2&-3\\\frac{5}{3}&-2\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\\frac{5}{3}&-2\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍‌ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\\frac{5}{3}&-2\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରି‌କ୍‌ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-\left(-3\times \frac{5}{3}\right)}&-\frac{-3}{2\left(-2\right)-\left(-3\times \frac{5}{3}\right)}\\-\frac{\frac{5}{3}}{2\left(-2\right)-\left(-3\times \frac{5}{3}\right)}&\frac{2}{2\left(-2\right)-\left(-3\times \frac{5}{3}\right)}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-2&3\\-\frac{5}{3}&2\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-2+3\\-\frac{5}{3}+2\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}1\\\frac{1}{3}\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
m=1,n=\frac{1}{3}
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ m ଏବଂ n ବାହାର କରନ୍ତୁ.
2m-3n=1,\frac{5}{3}m-2n=1
ଭାରିଏବୁଲ୍‌ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍‌ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍‌ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
\frac{5}{3}\times 2m+\frac{5}{3}\left(-3\right)n=\frac{5}{3},2\times \frac{5}{3}m+2\left(-2\right)n=2
2m ଏବଂ \frac{5m}{3} କୁ ସମାନ କରିବା ପାଇଁ, ପ୍ରଥମ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ପଦକୁ \frac{5}{3} ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ ଏବଂ ଦ୍ୱିତୀୟ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ଟର୍ମ୍‌କୁ 2 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
\frac{10}{3}m-5n=\frac{5}{3},\frac{10}{3}m-4n=2
ସରଳୀକୃତ କରିବା.
\frac{10}{3}m-\frac{10}{3}m-5n+4n=\frac{5}{3}-2
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା \frac{10}{3}m-5n=\frac{5}{3} ଠାରୁ \frac{10}{3}m-4n=2 କୁ ବିୟୋଗ କରନ୍ତୁ.
-5n+4n=\frac{5}{3}-2
\frac{10m}{3} କୁ -\frac{10m}{3} ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ \frac{10m}{3} ଏବଂ -\frac{10m}{3} ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
-n=\frac{5}{3}-2
-5n କୁ 4n ସହ ଯୋଡନ୍ତୁ.
-n=-\frac{1}{3}
\frac{5}{3} କୁ -2 ସହ ଯୋଡନ୍ତୁ.
n=\frac{1}{3}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{5}{3}m-2\times \frac{1}{3}=1
\frac{5}{3}m-2n=1 ରେ n ପାଇଁ \frac{1}{3} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ m ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
\frac{5}{3}m-\frac{2}{3}=1
-2 କୁ \frac{1}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{5}{3}m=\frac{5}{3}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{2}{3} ଯୋଡନ୍ତୁ.
m=1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \frac{5}{3} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
m=1,n=\frac{1}{3}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.