\left\{ \begin{array} { l } { 10 x + 5 y = 170 } \\ { 6 x + 10 y = 200 } \end{array} \right.
x, y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=10
y=14
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
10x+5y=170,6x+10y=200
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
10x+5y=170
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ x କୁ ପୃଥକ୍ କରିବା ଦ୍ୱାରା x ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
10x=-5y+170
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 5y ବିୟୋଗ କରନ୍ତୁ.
x=\frac{1}{10}\left(-5y+170\right)
ଉଭୟ ପାର୍ଶ୍ୱକୁ 10 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{1}{2}y+17
\frac{1}{10} କୁ -5y+170 ଥର ଗୁଣନ କରନ୍ତୁ.
6\left(-\frac{1}{2}y+17\right)+10y=200
ଅନ୍ୟ ସମୀକରଣ, 6x+10y=200 ରେ x ସ୍ଥାନରେ -\frac{y}{2}+17 ପ୍ରତିବଦଳ କରନ୍ତୁ.
-3y+102+10y=200
6 କୁ -\frac{y}{2}+17 ଥର ଗୁଣନ କରନ୍ତୁ.
7y+102=200
-3y କୁ 10y ସହ ଯୋଡନ୍ତୁ.
7y=98
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 102 ବିୟୋଗ କରନ୍ତୁ.
y=14
ଉଭୟ ପାର୍ଶ୍ୱକୁ 7 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{1}{2}\times 14+17
x=-\frac{1}{2}y+17 ରେ y ପାଇଁ 14 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
x=-7+17
-\frac{1}{2} କୁ 14 ଥର ଗୁଣନ କରନ୍ତୁ.
x=10
17 କୁ -7 ସହ ଯୋଡନ୍ତୁ.
x=10,y=14
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
10x+5y=170,6x+10y=200
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}10&5\\6&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}170\\200\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}10&5\\6&10\end{matrix}\right))\left(\begin{matrix}10&5\\6&10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&5\\6&10\end{matrix}\right))\left(\begin{matrix}170\\200\end{matrix}\right)
\left(\begin{matrix}10&5\\6&10\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&5\\6&10\end{matrix}\right))\left(\begin{matrix}170\\200\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}10&5\\6&10\end{matrix}\right))\left(\begin{matrix}170\\200\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରିକ୍ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{10\times 10-5\times 6}&-\frac{5}{10\times 10-5\times 6}\\-\frac{6}{10\times 10-5\times 6}&\frac{10}{10\times 10-5\times 6}\end{matrix}\right)\left(\begin{matrix}170\\200\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&-\frac{1}{14}\\-\frac{3}{35}&\frac{1}{7}\end{matrix}\right)\left(\begin{matrix}170\\200\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}\times 170-\frac{1}{14}\times 200\\-\frac{3}{35}\times 170+\frac{1}{7}\times 200\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\14\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
x=10,y=14
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ x ଏବଂ y ବାହାର କରନ୍ତୁ.
10x+5y=170,6x+10y=200
ଭାରିଏବୁଲ୍ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
6\times 10x+6\times 5y=6\times 170,10\times 6x+10\times 10y=10\times 200
10x ଏବଂ 6x କୁ ସମାନ କରିବା ପାଇଁ, ପ୍ରଥମ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ପଦକୁ 6 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ ଏବଂ ଦ୍ୱିତୀୟ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ଟର୍ମ୍କୁ 10 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
60x+30y=1020,60x+100y=2000
ସରଳୀକୃତ କରିବା.
60x-60x+30y-100y=1020-2000
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା 60x+30y=1020 ଠାରୁ 60x+100y=2000 କୁ ବିୟୋଗ କରନ୍ତୁ.
30y-100y=1020-2000
60x କୁ -60x ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ 60x ଏବଂ -60x ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
-70y=1020-2000
30y କୁ -100y ସହ ଯୋଡନ୍ତୁ.
-70y=-980
1020 କୁ -2000 ସହ ଯୋଡନ୍ତୁ.
y=14
ଉଭୟ ପାର୍ଶ୍ୱକୁ -70 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
6x+10\times 14=200
6x+10y=200 ରେ y ପାଇଁ 14 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
6x+140=200
10 କୁ 14 ଥର ଗୁଣନ କରନ୍ତୁ.
6x=60
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 140 ବିୟୋଗ କରନ୍ତୁ.
x=10
ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=10,y=14
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}