\left\{ \begin{array} { l } { - 11 A - 8 B = 0 } \\ { - 11 B + 8 A = 1 } \end{array} \right.
A, B ପାଇଁ ସମାଧାନ କରନ୍ତୁ
A=\frac{8}{185}\approx 0.043243243
B=-\frac{11}{185}\approx -0.059459459
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
-11A-8B=0,8A-11B=1
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
-11A-8B=0
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ A କୁ ପୃଥକ୍ କରିବା ଦ୍ୱାରା A ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
-11A=8B
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 8B ଯୋଡନ୍ତୁ.
A=-\frac{1}{11}\times 8B
ଉଭୟ ପାର୍ଶ୍ୱକୁ -11 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
A=-\frac{8}{11}B
-\frac{1}{11} କୁ 8B ଥର ଗୁଣନ କରନ୍ତୁ.
8\left(-\frac{8}{11}\right)B-11B=1
ଅନ୍ୟ ସମୀକରଣ, 8A-11B=1 ରେ A ସ୍ଥାନରେ -\frac{8B}{11} ପ୍ରତିବଦଳ କରନ୍ତୁ.
-\frac{64}{11}B-11B=1
8 କୁ -\frac{8B}{11} ଥର ଗୁଣନ କରନ୍ତୁ.
-\frac{185}{11}B=1
-\frac{64B}{11} କୁ -11B ସହ ଯୋଡନ୍ତୁ.
B=-\frac{11}{185}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ -\frac{185}{11} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
A=-\frac{8}{11}\left(-\frac{11}{185}\right)
A=-\frac{8}{11}B ରେ B ପାଇଁ -\frac{11}{185} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ A ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
A=\frac{8}{185}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା -\frac{8}{11} କୁ -\frac{11}{185} ଥର ଗୁଣନ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
A=\frac{8}{185},B=-\frac{11}{185}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
-11A-8B=0,8A-11B=1
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}-11&-8\\8&-11\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}0\\1\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}-11&-8\\8&-11\end{matrix}\right))\left(\begin{matrix}-11&-8\\8&-11\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}-11&-8\\8&-11\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
\left(\begin{matrix}-11&-8\\8&-11\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}-11&-8\\8&-11\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}A\\B\end{matrix}\right)=inverse(\left(\begin{matrix}-11&-8\\8&-11\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରିକ୍ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{-11\left(-11\right)-\left(-8\times 8\right)}&-\frac{-8}{-11\left(-11\right)-\left(-8\times 8\right)}\\-\frac{8}{-11\left(-11\right)-\left(-8\times 8\right)}&-\frac{11}{-11\left(-11\right)-\left(-8\times 8\right)}\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}-\frac{11}{185}&\frac{8}{185}\\-\frac{8}{185}&-\frac{11}{185}\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}A\\B\end{matrix}\right)=\left(\begin{matrix}\frac{8}{185}\\-\frac{11}{185}\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
A=\frac{8}{185},B=-\frac{11}{185}
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ A ଏବଂ B ବାହାର କରନ୍ତୁ.
-11A-8B=0,8A-11B=1
ଭାରିଏବୁଲ୍ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
8\left(-11\right)A+8\left(-8\right)B=0,-11\times 8A-11\left(-11\right)B=-11
-11A ଏବଂ 8A କୁ ସମାନ କରିବା ପାଇଁ, ପ୍ରଥମ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ପଦକୁ 8 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ ଏବଂ ଦ୍ୱିତୀୟ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ଟର୍ମ୍କୁ -11 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
-88A-64B=0,-88A+121B=-11
ସରଳୀକୃତ କରିବା.
-88A+88A-64B-121B=11
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା -88A-64B=0 ଠାରୁ -88A+121B=-11 କୁ ବିୟୋଗ କରନ୍ତୁ.
-64B-121B=11
-88A କୁ 88A ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ -88A ଏବଂ 88A ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
-185B=11
-64B କୁ -121B ସହ ଯୋଡନ୍ତୁ.
B=-\frac{11}{185}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -185 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
8A-11\left(-\frac{11}{185}\right)=1
8A-11B=1 ରେ B ପାଇଁ -\frac{11}{185} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ A ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
8A+\frac{121}{185}=1
-11 କୁ -\frac{11}{185} ଥର ଗୁଣନ କରନ୍ତୁ.
8A=\frac{64}{185}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{121}{185} ବିୟୋଗ କରନ୍ତୁ.
A=\frac{8}{185}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
A=\frac{8}{185},B=-\frac{11}{185}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}