\left\{ \begin{array} { l } { \sqrt { 2 } x - 5 y = 2,5 } \\ { \sqrt { 2 } x - 7 y = 3,5 } \end{array} \right.
x, y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=0
y=-0.5
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\sqrt{2}x-5y=2.5,\sqrt{2}x-7y=3.5
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
\sqrt{2}x-5y=2.5
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ x କୁ ପୃଥକ୍ କରିବା ଦ୍ୱାରା x ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
\sqrt{2}x=5y+2.5
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 5y ଯୋଡନ୍ତୁ.
x=\frac{\sqrt{2}}{2}\left(5y+2.5\right)
ଉଭୟ ପାର୍ଶ୍ୱକୁ \sqrt{2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{5\sqrt{2}}{2}y+\frac{5\sqrt{2}}{4}
\frac{\sqrt{2}}{2} କୁ 5y+2.5 ଥର ଗୁଣନ କରନ୍ତୁ.
\sqrt{2}\left(\frac{5\sqrt{2}}{2}y+\frac{5\sqrt{2}}{4}\right)-7y=3.5
ଅନ୍ୟ ସମୀକରଣ, \sqrt{2}x-7y=3.5 ରେ x ସ୍ଥାନରେ \frac{5\left(1+2y\right)\sqrt{2}}{4} ପ୍ରତିବଦଳ କରନ୍ତୁ.
5y+\frac{5}{2}-7y=3.5
\sqrt{2} କୁ \frac{5\left(1+2y\right)\sqrt{2}}{4} ଥର ଗୁଣନ କରନ୍ତୁ.
-2y+\frac{5}{2}=3.5
5y କୁ -7y ସହ ଯୋଡନ୍ତୁ.
-2y=1
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{5}{2} ବିୟୋଗ କରନ୍ତୁ.
y=-\frac{1}{2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{5\sqrt{2}}{2}\left(-\frac{1}{2}\right)+\frac{5\sqrt{2}}{4}
x=\frac{5\sqrt{2}}{2}y+\frac{5\sqrt{2}}{4} ରେ y ପାଇଁ -\frac{1}{2} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
x=\frac{-5\sqrt{2}+5\sqrt{2}}{4}
\frac{5\sqrt{2}}{2} କୁ -\frac{1}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
x=0
\frac{5\sqrt{2}}{4} କୁ -\frac{5\sqrt{2}}{4} ସହ ଯୋଡନ୍ତୁ.
x=0,y=-\frac{1}{2}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
\sqrt{2}x-5y=2.5,\sqrt{2}x-7y=3.5
ଭାରିଏବୁଲ୍ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
\sqrt{2}x+\left(-\sqrt{2}\right)x-5y+7y=\frac{5-7}{2}
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା \sqrt{2}x-5y=2.5 ଠାରୁ \sqrt{2}x-7y=3.5 କୁ ବିୟୋଗ କରନ୍ତୁ.
-5y+7y=\frac{5-7}{2}
\sqrt{2}x କୁ -\sqrt{2}x ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ \sqrt{2}x ଏବଂ -\sqrt{2}x ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
2y=\frac{5-7}{2}
-5y କୁ 7y ସହ ଯୋଡନ୍ତୁ.
2y=-1
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା -3.5 ସହିତ 2.5 ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
y=-\frac{1}{2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\sqrt{2}x-7\left(-\frac{1}{2}\right)=3.5
\sqrt{2}x-7y=3.5 ରେ y ପାଇଁ -\frac{1}{2} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
\sqrt{2}x+\frac{7}{2}=3.5
-7 କୁ -\frac{1}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
\sqrt{2}x=0
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{7}{2} ବିୟୋଗ କରନ୍ତୁ.
x=0
ଉଭୟ ପାର୍ଶ୍ୱକୁ \sqrt{2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=0,y=-\frac{1}{2}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}