\left\{ \begin{array} { l } { \frac { x - y } { 5 } - \frac { y } { 2 } = x - 1 } \\ { \frac { x } { 3 } + \frac { y + 2 } { 2 } = 1 } \end{array} \right.
x, y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=3
y=-2
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
2\left(x-y\right)-5y=10x-10
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 10 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 5,2 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
2x-2y-5y=10x-10
2 କୁ x-y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2x-7y=10x-10
-7y ପାଇବାକୁ -2y ଏବଂ -5y ସମ୍ମେଳନ କରନ୍ତୁ.
2x-7y-10x=-10
ଉଭୟ ପାର୍ଶ୍ୱରୁ 10x ବିୟୋଗ କରନ୍ତୁ.
-8x-7y=-10
-8x ପାଇବାକୁ 2x ଏବଂ -10x ସମ୍ମେଳନ କରନ୍ତୁ.
2x+3\left(y+2\right)=6
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 3,2 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
2x+3y+6=6
3 କୁ y+2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2x+3y=6-6
ଉଭୟ ପାର୍ଶ୍ୱରୁ 6 ବିୟୋଗ କରନ୍ତୁ.
2x+3y=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 6 ଏବଂ 6 ବିୟୋଗ କରନ୍ତୁ.
-8x-7y=-10,2x+3y=0
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
-8x-7y=-10
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ x କୁ ପୃଥକ୍ କରିବା ଦ୍ୱାରା x ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
-8x=7y-10
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 7y ଯୋଡନ୍ତୁ.
x=-\frac{1}{8}\left(7y-10\right)
ଉଭୟ ପାର୍ଶ୍ୱକୁ -8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{7}{8}y+\frac{5}{4}
-\frac{1}{8} କୁ 7y-10 ଥର ଗୁଣନ କରନ୍ତୁ.
2\left(-\frac{7}{8}y+\frac{5}{4}\right)+3y=0
ଅନ୍ୟ ସମୀକରଣ, 2x+3y=0 ରେ x ସ୍ଥାନରେ -\frac{7y}{8}+\frac{5}{4} ପ୍ରତିବଦଳ କରନ୍ତୁ.
-\frac{7}{4}y+\frac{5}{2}+3y=0
2 କୁ -\frac{7y}{8}+\frac{5}{4} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{5}{4}y+\frac{5}{2}=0
-\frac{7y}{4} କୁ 3y ସହ ଯୋଡନ୍ତୁ.
\frac{5}{4}y=-\frac{5}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{5}{2} ବିୟୋଗ କରନ୍ତୁ.
y=-2
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \frac{5}{4} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ, ଯାହାକି ଭଗ୍ନାଂଶର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା ଉଭୟ ପାର୍ଶ୍ୱକୁ ଗୁଣନ କରିବା ପରି ସମାନ ହୋଇଥାଏ.
x=-\frac{7}{8}\left(-2\right)+\frac{5}{4}
x=-\frac{7}{8}y+\frac{5}{4} ରେ y ପାଇଁ -2 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
x=\frac{7+5}{4}
-\frac{7}{8} କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=3
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{7}{4} ସହିତ \frac{5}{4} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
x=3,y=-2
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
2\left(x-y\right)-5y=10x-10
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 10 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 5,2 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
2x-2y-5y=10x-10
2 କୁ x-y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2x-7y=10x-10
-7y ପାଇବାକୁ -2y ଏବଂ -5y ସମ୍ମେଳନ କରନ୍ତୁ.
2x-7y-10x=-10
ଉଭୟ ପାର୍ଶ୍ୱରୁ 10x ବିୟୋଗ କରନ୍ତୁ.
-8x-7y=-10
-8x ପାଇବାକୁ 2x ଏବଂ -10x ସମ୍ମେଳନ କରନ୍ତୁ.
2x+3\left(y+2\right)=6
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 3,2 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
2x+3y+6=6
3 କୁ y+2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2x+3y=6-6
ଉଭୟ ପାର୍ଶ୍ୱରୁ 6 ବିୟୋଗ କରନ୍ତୁ.
2x+3y=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 6 ଏବଂ 6 ବିୟୋଗ କରନ୍ତୁ.
-8x-7y=-10,2x+3y=0
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}-8&-7\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\0\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}-8&-7\\2&3\end{matrix}\right))\left(\begin{matrix}-8&-7\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-7\\2&3\end{matrix}\right))\left(\begin{matrix}-10\\0\end{matrix}\right)
\left(\begin{matrix}-8&-7\\2&3\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-7\\2&3\end{matrix}\right))\left(\begin{matrix}-10\\0\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-7\\2&3\end{matrix}\right))\left(\begin{matrix}-10\\0\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରିକ୍ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{-8\times 3-\left(-7\times 2\right)}&-\frac{-7}{-8\times 3-\left(-7\times 2\right)}\\-\frac{2}{-8\times 3-\left(-7\times 2\right)}&-\frac{8}{-8\times 3-\left(-7\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-10\\0\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{10}&-\frac{7}{10}\\\frac{1}{5}&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}-10\\0\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{10}\left(-10\right)\\\frac{1}{5}\left(-10\right)\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
x=3,y=-2
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ x ଏବଂ y ବାହାର କରନ୍ତୁ.
2\left(x-y\right)-5y=10x-10
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 10 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 5,2 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
2x-2y-5y=10x-10
2 କୁ x-y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2x-7y=10x-10
-7y ପାଇବାକୁ -2y ଏବଂ -5y ସମ୍ମେଳନ କରନ୍ତୁ.
2x-7y-10x=-10
ଉଭୟ ପାର୍ଶ୍ୱରୁ 10x ବିୟୋଗ କରନ୍ତୁ.
-8x-7y=-10
-8x ପାଇବାକୁ 2x ଏବଂ -10x ସମ୍ମେଳନ କରନ୍ତୁ.
2x+3\left(y+2\right)=6
ଦ୍ୱିତୀୟ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 3,2 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
2x+3y+6=6
3 କୁ y+2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2x+3y=6-6
ଉଭୟ ପାର୍ଶ୍ୱରୁ 6 ବିୟୋଗ କରନ୍ତୁ.
2x+3y=0
0 ପ୍ରାପ୍ତ କରିବାକୁ 6 ଏବଂ 6 ବିୟୋଗ କରନ୍ତୁ.
-8x-7y=-10,2x+3y=0
ଭାରିଏବୁଲ୍ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
2\left(-8\right)x+2\left(-7\right)y=2\left(-10\right),-8\times 2x-8\times 3y=0
-8x ଏବଂ 2x କୁ ସମାନ କରିବା ପାଇଁ, ପ୍ରଥମ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ପଦକୁ 2 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ ଏବଂ ଦ୍ୱିତୀୟ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ଟର୍ମ୍କୁ -8 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
-16x-14y=-20,-16x-24y=0
ସରଳୀକୃତ କରିବା.
-16x+16x-14y+24y=-20
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା -16x-14y=-20 ଠାରୁ -16x-24y=0 କୁ ବିୟୋଗ କରନ୍ତୁ.
-14y+24y=-20
-16x କୁ 16x ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ -16x ଏବଂ 16x ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
10y=-20
-14y କୁ 24y ସହ ଯୋଡନ୍ତୁ.
y=-2
ଉଭୟ ପାର୍ଶ୍ୱକୁ 10 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
2x+3\left(-2\right)=0
2x+3y=0 ରେ y ପାଇଁ -2 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
2x-6=0
3 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
2x=6
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 6 ଯୋଡନ୍ତୁ.
x=3
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=3,y=-2
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}