ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x, y ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

x=ey
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଭାରିଏବୁଲ୍‌ y 0 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ y ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
ey+y=1
ଅନ୍ୟ ସମୀକରଣ, x+y=1 ରେ x ସ୍ଥାନରେ ey ପ୍ରତିବଦଳ କରନ୍ତୁ.
\left(e+1\right)y=1
ey କୁ y ସହ ଯୋଡନ୍ତୁ.
y=\frac{1}{e+1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ e+1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=e\times \frac{1}{e+1}
x=ey ରେ y ପାଇଁ \frac{1}{e+1} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
x=\frac{e}{e+1}
e କୁ \frac{1}{e+1} ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{e}{e+1},y=\frac{1}{e+1}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.
x=\frac{e}{e+1},y=\frac{1}{e+1}\text{, }y\neq 0
ଭାରିଏବୁଲ୍‌ y 0 ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ.
x=ey
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଭାରିଏବୁଲ୍‌ y 0 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ y ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
x-ey=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ ey ବିୟୋଗ କରନ୍ତୁ.
x+\left(-e\right)y=0,x+y=1
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍‌ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}1&-e\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\1\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}1&-e\\1&1\end{matrix}\right))\left(\begin{matrix}1&-e\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-e\\1&1\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
\left(\begin{matrix}1&-e\\1&1\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-e\\1&1\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍‌ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-e\\1&1\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରି‌କ୍‌ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-e\right)}&-\frac{-e}{1-\left(-e\right)}\\-\frac{1}{1-\left(-e\right)}&\frac{1}{1-\left(-e\right)}\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{e+1}&\frac{e}{e+1}\\-\frac{1}{e+1}&\frac{1}{e+1}\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{e}{e+1}\\\frac{1}{e+1}\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
x=\frac{e}{e+1},y=\frac{1}{e+1}
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ x ଏବଂ y ବାହାର କରନ୍ତୁ.
x=\frac{e}{e+1},y=\frac{1}{e+1}\text{, }y\neq 0
ଭାରିଏବୁଲ୍‌ y 0 ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ.
x=ey
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ଭାରିଏବୁଲ୍‌ y 0 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ y ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
x-ey=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ ey ବିୟୋଗ କରନ୍ତୁ.
x+\left(-e\right)y=0,x+y=1
ଭାରିଏବୁଲ୍‌ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍‌ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍‌ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
x-x+\left(-e\right)y-y=-1
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା x+\left(-e\right)y=0 ଠାରୁ x+y=1 କୁ ବିୟୋଗ କରନ୍ତୁ.
\left(-e\right)y-y=-1
x କୁ -x ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ x ଏବଂ -x ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\left(-e-1\right)y=-1
-ey କୁ -y ସହ ଯୋଡନ୍ତୁ.
y=\frac{1}{e+1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -e-1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x+\frac{1}{e+1}=1
x+y=1 ରେ y ପାଇଁ \frac{1}{1+e} କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍‌ ଧାରଣ କରିଥାଏ, ଆପଣ x ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
x=\frac{e}{e+1}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{1}{1+e} ବିୟୋଗ କରନ୍ତୁ.
x=\frac{e}{e+1},y=\frac{1}{e+1}
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍‌ ସମାଧାନ ହୋଇଛି.
x=\frac{e}{e+1},y=\frac{1}{e+1}\text{, }y\neq 0
ଭାରିଏବୁଲ୍‌ y 0 ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ.