\left\{ \begin{array} { l } { \frac { a } { 4 } - b \ln \frac { 1 } { 2 } + \frac { 1 } { 2 } = 1 + \ln 2 } \\ { a - 2 b = 0 } \end{array} \right.
a, b ପାଇଁ ସମାଧାନ କରନ୍ତୁ
a=2
b=1
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
4\left(\frac{a}{4}-b\ln(\frac{1}{2})\right)+2=4+4\ln(2)
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 4,2 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
4\left(\frac{a}{4}-b\ln(\frac{1}{2})\right)=4+4\ln(2)-2
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2 ବିୟୋଗ କରନ୍ତୁ.
4\left(\frac{a}{4}-b\ln(\frac{1}{2})\right)=2+4\ln(2)
2 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 2 ବିୟୋଗ କରନ୍ତୁ.
16\left(\frac{a}{4}-b\ln(\frac{1}{2})\right)=8+16\ln(2)
ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
64\left(\frac{a}{4}-b\ln(\frac{1}{2})\right)=32+64\ln(2)
ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
64\times \frac{a}{4}+64\ln(2)b=32+64\ln(2)
64 କୁ \frac{a}{4}-b\ln(\frac{1}{2}) ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
16a+64\ln(2)b=32+64\ln(2)
64 ଏବଂ 4 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 4 ବାତିଲ୍ କରନ୍ତୁ.
16a+64\ln(2)b=64\ln(2)+32,a-2b=0
ସ୍ଥାନାପନ୍ନ ବା ସବଷ୍ଟିଚ୍ୟୁସନ୍ ବ୍ୟବହାର କରି ଏକ ଯୋଡା ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ପ୍ରଥମେ ଭାରିଏବୁଲ୍ଗୁଡିକ ପାଇଁ ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ସମାଧାନ କରନ୍ତୁ. ତାପରେ ସେହି ଭାରିଏବୁଲ୍ ପାଇଁ ଫଳାଫଳକୁ ଅନ୍ୟ ସମୀକରଣରେ ପ୍ରତିବଦଳ କରନ୍ତୁ.
16a+64\ln(2)b=64\ln(2)+32
ସମୀକରଣଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏ ମନୋନୟନ କରନ୍ତୁ ଏବଂ ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ a କୁ ପୃଥକ୍ କରିବା ଦ୍ୱାରା a ପାଇଁ ସମାଧାନ କରନ୍ତୁ.
16a=\left(-64\ln(2)\right)b+64\ln(2)+32
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 64\ln(2)b ବିୟୋଗ କରନ୍ତୁ.
a=\frac{1}{16}\left(\left(-64\ln(2)\right)b+64\ln(2)+32\right)
ଉଭୟ ପାର୍ଶ୍ୱକୁ 16 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a=\left(-4\ln(2)\right)b+4\ln(2)+2
\frac{1}{16} କୁ -64\ln(2)b+32+64\ln(2) ଥର ଗୁଣନ କରନ୍ତୁ.
\left(-4\ln(2)\right)b+4\ln(2)+2-2b=0
ଅନ୍ୟ ସମୀକରଣ, a-2b=0 ରେ a ସ୍ଥାନରେ -4\ln(2)b+2+4\ln(2) ପ୍ରତିବଦଳ କରନ୍ତୁ.
\left(-4\ln(2)-2\right)b+4\ln(2)+2=0
-4\ln(2)b କୁ -2b ସହ ଯୋଡନ୍ତୁ.
\left(-4\ln(2)-2\right)b=-4\ln(2)-2
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ 2+4\ln(2) ବିୟୋଗ କରନ୍ତୁ.
b=1
ଉଭୟ ପାର୍ଶ୍ୱକୁ -4\ln(2)-2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a=-4\ln(2)+4\ln(2)+2
a=\left(-4\ln(2)\right)b+4\ln(2)+2 ରେ b ପାଇଁ 1 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ a ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
a=2
2+4\ln(2) କୁ -4\ln(2) ସହ ଯୋଡନ୍ତୁ.
a=2,b=1
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
4\left(\frac{a}{4}-b\ln(\frac{1}{2})\right)+2=4+4\ln(2)
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 4,2 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
4\left(\frac{a}{4}-b\ln(\frac{1}{2})\right)=4+4\ln(2)-2
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2 ବିୟୋଗ କରନ୍ତୁ.
4\left(\frac{a}{4}-b\ln(\frac{1}{2})\right)=2+4\ln(2)
2 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 2 ବିୟୋଗ କରନ୍ତୁ.
16\left(\frac{a}{4}-b\ln(\frac{1}{2})\right)=8+16\ln(2)
ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
64\left(\frac{a}{4}-b\ln(\frac{1}{2})\right)=32+64\ln(2)
ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
64\times \frac{a}{4}+64\ln(2)b=32+64\ln(2)
64 କୁ \frac{a}{4}-b\ln(\frac{1}{2}) ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
16a+64\ln(2)b=32+64\ln(2)
64 ଏବଂ 4 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 4 ବାତିଲ୍ କରନ୍ତୁ.
16a+64\ln(2)b=64\ln(2)+32,a-2b=0
ସମୀକରଣଗୁଡିକୁ ମାନାଙ୍କ ରୂପରେ ରଖନ୍ତୁ ଏବଂ ତାପରେ ସମୀକରଣଗୁଡିକ ସିଷ୍ଟମ୍ ସମାଧାନ କରିବା ପାଇଁ ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ବ୍ୟବହାର କରନ୍ତୁ.
\left(\begin{matrix}16&64\ln(2)\\1&-2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}64\ln(2)+32\\0\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସ ପଦ୍ଧତିରେ ସମୀକରଣଗୁଡିକ ଲେଖନ୍ତୁ.
inverse(\left(\begin{matrix}16&64\ln(2)\\1&-2\end{matrix}\right))\left(\begin{matrix}16&64\ln(2)\\1&-2\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}16&64\ln(2)\\1&-2\end{matrix}\right))\left(\begin{matrix}64\ln(2)+32\\0\end{matrix}\right)
\left(\begin{matrix}16&64\ln(2)\\1&-2\end{matrix}\right) ର ଇନବକ୍ସ ମ୍ୟାଟ୍ରିକ୍ସ ଦ୍ୱାରା ସମୀକରଣକୁ ବାମରେ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}16&64\ln(2)\\1&-2\end{matrix}\right))\left(\begin{matrix}64\ln(2)+32\\0\end{matrix}\right)
ଏକ ମ୍ୟାଟ୍ରିକ୍ସର ଉତ୍ପାଦ ଏବଂ ଏହାର ଇନଭର୍ସ୍ ହେଉଛି ପରିଚାୟକ ମ୍ୟାଟ୍ରିକ୍ସ.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}16&64\ln(2)\\1&-2\end{matrix}\right))\left(\begin{matrix}64\ln(2)+32\\0\end{matrix}\right)
ସମାନ ଚିହ୍ନର ବାମ ହାତ ପାର୍ଶ୍ୱରେ ଥିବା ମେଟ୍ରିକ୍ଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{16\left(-2\right)-64\ln(2)}&-\frac{64\ln(2)}{16\left(-2\right)-64\ln(2)}\\-\frac{1}{16\left(-2\right)-64\ln(2)}&\frac{16}{16\left(-2\right)-64\ln(2)}\end{matrix}\right)\left(\begin{matrix}64\ln(2)+32\\0\end{matrix}\right)
2\times 2 ମ୍ୟାଟ୍ରିକ୍ସ \left(\begin{matrix}a&b\\c&d\end{matrix}\right)ପାଇଁ, ଓଲଟା ମ୍ୟାଟ୍ରିକ୍ସ ହେଉଛି \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ତେଣୁ ମ୍ୟାଟ୍ରିକ୍ସ ସମୀକରଣକୁ ଏକ ମ୍ୟାଟ୍ରିକ୍ସ ଗୁଣନ ସମସ୍ୟା ଭାବରେ ପୁନଃଲିଖିତ କରାଯାଇପାରିବ.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{16\left(2\ln(2)+1\right)}&\frac{2\ln(2)}{2\ln(2)+1}\\\frac{1}{32\left(2\ln(2)+1\right)}&-\frac{1}{2\left(2\ln(2)+1\right)}\end{matrix}\right)\left(\begin{matrix}64\ln(2)+32\\0\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{16\left(2\ln(2)+1\right)}\left(64\ln(2)+32\right)\\\frac{1}{32\left(2\ln(2)+1\right)}\left(64\ln(2)+32\right)\end{matrix}\right)
ମ୍ୟାଟ୍ରିକ୍ସଗୁଡିକ ଗୁଣନ କରନ୍ତୁ.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
ପାଟୀଗଣିତ କରନ୍ତୁ.
a=2,b=1
ମ୍ୟାଟ୍ରିକ୍ସ ଉପାଦାନଗୁଡିକ a ଏବଂ b ବାହାର କରନ୍ତୁ.
4\left(\frac{a}{4}-b\ln(\frac{1}{2})\right)+2=4+4\ln(2)
ପ୍ରଥମ ସମୀକରଣ ବିବେଚନା କରନ୍ତୁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 4,2 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
4\left(\frac{a}{4}-b\ln(\frac{1}{2})\right)=4+4\ln(2)-2
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2 ବିୟୋଗ କରନ୍ତୁ.
4\left(\frac{a}{4}-b\ln(\frac{1}{2})\right)=2+4\ln(2)
2 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 2 ବିୟୋଗ କରନ୍ତୁ.
16\left(\frac{a}{4}-b\ln(\frac{1}{2})\right)=8+16\ln(2)
ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
64\left(\frac{a}{4}-b\ln(\frac{1}{2})\right)=32+64\ln(2)
ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
64\times \frac{a}{4}+64\ln(2)b=32+64\ln(2)
64 କୁ \frac{a}{4}-b\ln(\frac{1}{2}) ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
16a+64\ln(2)b=32+64\ln(2)
64 ଏବଂ 4 ରେ ଗରିଷ୍ଠ ସାଧାରଣ ଗୁଣନିୟକ 4 ବାତିଲ୍ କରନ୍ତୁ.
16a+64\ln(2)b=64\ln(2)+32,a-2b=0
ଭାରିଏବୁଲ୍ଗୁଡିକ ମଧ୍ୟରୁ ଗୋଟିଏର ଏଲିମିନେସନ୍ ଏବଂ ଗୁଣାଙ୍କ ବା କୋଏଫିସିଏଣ୍ଟ ଦ୍ୱାରା ସମାଧାନ କରିବା ପାଇଁ ଉଭୟ ସମୀକରଣରେ ସମାନ ହେବା ଆବଶ୍ୟକ ଯାହା ଫଳରେ ଭାରିଏବୁଲ୍ ପ୍ରତ୍ୟାହାର ହେବ ଯେତେବେଳେ ଗୋଟିଏ ସମୀକରଣ ଅନ୍ୟଟି ଠାରୁ ବିୟୋଗ ହୋଇଥାଏ.
16a+64\ln(2)b=64\ln(2)+32,16a+16\left(-2\right)b=0
16a ଏବଂ a କୁ ସମାନ କରିବା ପାଇଁ, ପ୍ରଥମ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ପଦକୁ 1 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ ଏବଂ ଦ୍ୱିତୀୟ ସମୀକରଣ ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ସମସ୍ତ ଟର୍ମ୍କୁ 16 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
16a+64\ln(2)b=64\ln(2)+32,16a-32b=0
ସରଳୀକୃତ କରିବା.
16a-16a+64\ln(2)b+32b=64\ln(2)+32
ସମାନ ଚିହ୍ନର ପ୍ରତ୍ୟେକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକାପରି ପଦଗୁଡିକୁ ବିୟୋଗ କରିବା ଦ୍ୱାରା 16a+64\ln(2)b=64\ln(2)+32 ଠାରୁ 16a-32b=0 କୁ ବିୟୋଗ କରନ୍ତୁ.
64\ln(2)b+32b=64\ln(2)+32
16a କୁ -16a ସହ ଯୋଡନ୍ତୁ. କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଯାହା ସମାଧାନ ହୋଇପାରିବ ତାହା ଥିବା ଏକ ସମୀକରଣ ଛାଡି, ପଦ 16a ଏବଂ -16a ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\left(64\ln(2)+32\right)b=64\ln(2)+32
64\ln(2)b କୁ 32b ସହ ଯୋଡନ୍ତୁ.
b=1
ଉଭୟ ପାର୍ଶ୍ୱକୁ 32+64\ln(2) ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
a-2=0
a-2b=0 ରେ b ପାଇଁ 1 କୁ ବଦଳ କରନ୍ତୁ. କାରଣ ପରିଣାମାତ୍ମକ ସମୀକରଣ କେବଳ ଗୋଟିଏ ଭାରିଏବୁଲ୍ ଧାରଣ କରିଥାଏ, ଆପଣ a ପାଇଁ ସିଧାସଳଖ ଭାବରେ ସମାଧାନ କରିପାରିବେ.
a=2
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 2 ଯୋଡନ୍ତୁ.
a=2,b=1
ବର୍ତ୍ତମାନ ସିଷ୍ଟମ୍ ସମାଧାନ ହୋଇଛି.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}