ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\int 270\sqrt{x}\mathrm{d}x
ପ୍ରଥମେ ଅନିର୍ଦ୍ଦିଷ୍ଟ ଇଣ୍ଟିଗ୍ରାଲ୍‍‌ର ମୂଲ୍ୟାଙ୍କନ କରନ୍ତୁ।
270\int \sqrt{x}\mathrm{d}x
\int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}xକୁ ବ୍ୟବହାର କରି ସ୍ଥିରାଙ୍କର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ।
180x^{\frac{3}{2}}
x^{\frac{1}{2}} ଭାବରେ \sqrt{x} ପୁନଃ ଲେଖନ୍ତୁ. ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x^{\frac{1}{2}}\mathrm{d}xକୁ \frac{x^{\frac{3}{2}}}{\frac{3}{2}}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। ସରଳୀକୃତ କରିବା. 270 କୁ \frac{2x^{\frac{3}{2}}}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
180\times 4^{\frac{3}{2}}-180\times 1^{\frac{3}{2}}
ନିର୍ଦ୍ଦିଷ୍ଟ ସମାକଳ, ପ୍ରତିଅବକଳଜର ଏପରି ବ୍ୟାଖ୍ୟା ଯାହା ଇଣ୍ଟିଗ୍ରେସନ୍‍‌ର ଉଚ୍ଚତର ସୀମା ବିଯୁକ୍ତ ନିମ୍ନତର ସୀମାରେ ମୂଲ୍ୟାଙ୍କିତ କରାଯାଇଛି।
1260
ସରଳୀକୃତ କରିବା.