ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\int _{0}^{4}\left(2x^{2}-525x\right)\left(1-0x\right)\mathrm{d}x
0 ପ୍ରାପ୍ତ କରିବାକୁ 0 ଏବଂ 125 ଗୁଣନ କରନ୍ତୁ.
\int _{0}^{4}\left(2x^{2}-525x\right)\left(1-0\right)\mathrm{d}x
ଯାହାକିଛିର ଶୂନ୍ୟ ଗୁଣା ଶୂନ୍ୟ ଦେଇଥାଏ.
\int _{0}^{4}\left(2x^{2}-525x\right)\times 1\mathrm{d}x
1 ପ୍ରାପ୍ତ କରିବାକୁ 1 ଏବଂ 0 ବିୟୋଗ କରନ୍ତୁ.
\int _{0}^{4}2x^{2}-525x\mathrm{d}x
2x^{2}-525x କୁ 1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\int 2x^{2}-525x\mathrm{d}x
ପ୍ରଥମେ ଅନିର୍ଦ୍ଦିଷ୍ଟ ଇଣ୍ଟିଗ୍ରାଲ୍‍‌ର ମୂଲ୍ୟାଙ୍କନ କରନ୍ତୁ।
\int 2x^{2}\mathrm{d}x+\int -525x\mathrm{d}x
ସମଷ୍ଟିକୁ ପଦରେ ପଦ ଏକତ୍ର କରନ୍ତୁ
2\int x^{2}\mathrm{d}x-525\int x\mathrm{d}x
ପ୍ରତ୍ୟେକ ପଦରେ ସ୍ଥିରାଙ୍କର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ।
\frac{2x^{3}}{3}-525\int x\mathrm{d}x
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x^{2}\mathrm{d}xକୁ \frac{x^{3}}{3}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। 2 କୁ \frac{x^{3}}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{2x^{3}}{3}-\frac{525x^{2}}{2}
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x\mathrm{d}xକୁ \frac{x^{2}}{2}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। -525 କୁ \frac{x^{2}}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{2}{3}\times 4^{3}-\frac{525}{2}\times 4^{2}-\left(\frac{2}{3}\times 0^{3}-\frac{525}{2}\times 0^{2}\right)
ନିର୍ଦ୍ଦିଷ୍ଟ ସମାକଳ, ପ୍ରତିଅବକଳଜର ଏପରି ବ୍ୟାଖ୍ୟା ଯାହା ଇଣ୍ଟିଗ୍ରେସନ୍‍‌ର ଉଚ୍ଚତର ସୀମା ବିଯୁକ୍ତ ନିମ୍ନତର ସୀମାରେ ମୂଲ୍ୟାଙ୍କିତ କରାଯାଇଛି।
-\frac{12472}{3}
ସରଳୀକୃତ କରିବା.