ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\int 3x^{3}-x^{2}+2x-4\mathrm{d}x
ପ୍ରଥମେ ଅନିର୍ଦ୍ଦିଷ୍ଟ ଇଣ୍ଟିଗ୍ରାଲ୍‍‌ର ମୂଲ୍ୟାଙ୍କନ କରନ୍ତୁ।
\int 3x^{3}\mathrm{d}x+\int -x^{2}\mathrm{d}x+\int 2x\mathrm{d}x+\int -4\mathrm{d}x
ସମଷ୍ଟିକୁ ପଦରେ ପଦ ଏକତ୍ର କରନ୍ତୁ
3\int x^{3}\mathrm{d}x-\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x+\int -4\mathrm{d}x
ପ୍ରତ୍ୟେକ ପଦରେ ସ୍ଥିରାଙ୍କର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ।
\frac{3x^{4}}{4}-\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x+\int -4\mathrm{d}x
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x^{3}\mathrm{d}xକୁ \frac{x^{4}}{4}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। 3 କୁ \frac{x^{4}}{4} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{3x^{4}}{4}-\frac{x^{3}}{3}+2\int x\mathrm{d}x+\int -4\mathrm{d}x
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x^{2}\mathrm{d}xକୁ \frac{x^{3}}{3}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। -1 କୁ \frac{x^{3}}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{3x^{4}}{4}-\frac{x^{3}}{3}+x^{2}+\int -4\mathrm{d}x
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x\mathrm{d}xକୁ \frac{x^{2}}{2}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। 2 କୁ \frac{x^{2}}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{3x^{4}}{4}-\frac{x^{3}}{3}+x^{2}-4x
ସାଧାରଣ ଇଣ୍ଟିଗ୍ରାଲ୍‍‌ ନିୟମର ସାରଣୀ \int a\mathrm{d}x=ax ବ୍ୟବହାର କରି -4ର ଇଣ୍ଟିଗ୍ରାଲ୍ ଖୋଜନ୍ତୁ।
\frac{3}{4}\times 1^{4}-\frac{1^{3}}{3}+1^{2}-4-\left(\frac{3}{4}\times 0^{4}-\frac{0^{3}}{3}+0^{2}-4\times 0\right)
ନିର୍ଦ୍ଦିଷ୍ଟ ସମାକଳ, ପ୍ରତିଅବକଳଜର ଏପରି ବ୍ୟାଖ୍ୟା ଯାହା ଇଣ୍ଟିଗ୍ରେସନ୍‍‌ର ଉଚ୍ଚତର ସୀମା ବିଯୁକ୍ତ ନିମ୍ନତର ସୀମାରେ ମୂଲ୍ୟାଙ୍କିତ କରାଯାଇଛି।
-\frac{31}{12}
ସରଳୀକୃତ କରିବା.