ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
w.r.t. y ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\int y-y^{2}\mathrm{d}y
y କୁ 1-y ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\int y\mathrm{d}y+\int -y^{2}\mathrm{d}y
ସମଷ୍ଟିକୁ ପଦରେ ପଦ ଏକତ୍ର କରନ୍ତୁ
\int y\mathrm{d}y-\int y^{2}\mathrm{d}y
ପ୍ରତ୍ୟେକ ପଦରେ ସ୍ଥିରାଙ୍କର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ।
\frac{y^{2}}{2}-\int y^{2}\mathrm{d}y
ଯେହେତୁ k\neq -1 ପାଇଁ \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1}, ତେଣୁ \int y\mathrm{d}yକୁ \frac{y^{2}}{2}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ।
\frac{y^{2}}{2}-\frac{y^{3}}{3}
ଯେହେତୁ k\neq -1 ପାଇଁ \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1}, ତେଣୁ \int y^{2}\mathrm{d}yକୁ \frac{y^{3}}{3}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। -1 କୁ \frac{y^{3}}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{y^{2}}{2}-\frac{y^{3}}{3}+С
ଯଦି F\left(y\right), f\left(y\right)ର ଏକ ଆଣ୍ଟିଡେରିଭେଟିଭ୍‌ ଅଟେ, ତେବେ f\left(y\right)ର ସମସ୍ତ ଆଣ୍ଟିଡେରିଭେଟିଭ୍‌ F\left(y\right)+C ଦ୍ୱାରା ଦିଆଯାଇଛି। ତେଣୁ ଫଳାଫଳରେ ଇଣ୍ଟିଗ୍ରେସନ୍‍‌ର ସ୍ଥିରାଙ୍କ C\in \mathrm{R}କୁ ଯୋଗ କରନ୍ତୁ।