ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
s ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\int e^{x}\cos(x)\mathrm{d}x=\frac{1}{2}e^{x}\cos(x)+\frac{1}{2}ie^{x}s
\frac{1}{2}e^{x} କୁ \cos(x)+si ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\frac{1}{2}e^{x}\cos(x)+\frac{1}{2}ie^{x}s=\int e^{x}\cos(x)\mathrm{d}x
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
\frac{1}{2}ie^{x}s=\int e^{x}\cos(x)\mathrm{d}x-\frac{1}{2}e^{x}\cos(x)
ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{1}{2}e^{x}\cos(x) ବିୟୋଗ କରନ୍ତୁ.
\frac{ie^{x}}{2}s=\int \cos(x)e^{x}\mathrm{d}x-\frac{\cos(x)e^{x}}{2}
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{2\times \frac{ie^{x}}{2}s}{ie^{x}}=\frac{2\left(-\frac{\cos(x)e^{x}}{2}+\left(\frac{1}{4}-\frac{1}{4}i\right)e^{i\ln(e^{x})+x}+\left(\frac{1}{4}+\frac{1}{4}i\right)e^{-i\ln(e^{x})+x}+С\right)}{ie^{x}}
ଉଭୟ ପାର୍ଶ୍ୱକୁ \frac{1}{2}ie^{x} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
s=\frac{2\left(-\frac{\cos(x)e^{x}}{2}+\left(\frac{1}{4}-\frac{1}{4}i\right)e^{i\ln(e^{x})+x}+\left(\frac{1}{4}+\frac{1}{4}i\right)e^{-i\ln(e^{x})+x}+С\right)}{ie^{x}}
\frac{1}{2}ie^{x} ଦ୍ୱାରା ବିଭାଜନ କରିବା \frac{1}{2}ie^{x} ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
s=\frac{\left(-1-i\right)e^{i\ln(e^{x})}+\left(1-i\right)e^{-i\ln(e^{x})}+\frac{2С}{e^{x}}+2i\cos(x)}{2}
\left(\frac{1}{4}+\frac{1}{4}i\right)e^{x-i\ln(e^{x})}+\left(\frac{1}{4}-\frac{1}{4}i\right)e^{x+i\ln(e^{x})}+С-\frac{e^{x}\cos(x)}{2} କୁ \frac{1}{2}ie^{x} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.