ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\int _{2}^{7}\left(4112x-\left(-\left(x-2\right)\left(x-2\right)\right)\right)\times \frac{7}{23}\mathrm{d}x
2 ଏବଂ 2 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\int _{2}^{7}\left(4112x-\left(-\left(x-2\right)x+2x-4\right)\right)\times \frac{7}{23}\mathrm{d}x
-\left(x-2\right) କୁ x-2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\int _{2}^{7}\left(4112x-\left(\left(-x+2\right)x+2x-4\right)\right)\times \frac{7}{23}\mathrm{d}x
-1 କୁ x-2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\int _{2}^{7}\left(4112x-\left(-x^{2}+2x+2x-4\right)\right)\times \frac{7}{23}\mathrm{d}x
-x+2 କୁ x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\int _{2}^{7}\left(4112x-\left(-x^{2}+4x-4\right)\right)\times \frac{7}{23}\mathrm{d}x
4x ପାଇବାକୁ 2x ଏବଂ 2x ସମ୍ମେଳନ କରନ୍ତୁ.
\int _{2}^{7}\left(4112x-\left(-x^{2}\right)-4x-\left(-4\right)\right)\times \frac{7}{23}\mathrm{d}x
-x^{2}+4x-4 ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
\int _{2}^{7}\left(4112x+x^{2}-4x-\left(-4\right)\right)\times \frac{7}{23}\mathrm{d}x
-x^{2} ର ବିପରୀତ ହେଉଛି x^{2}.
\int _{2}^{7}\left(4112x+x^{2}-4x+4\right)\times \frac{7}{23}\mathrm{d}x
-4 ର ବିପରୀତ ହେଉଛି 4.
\int _{2}^{7}\left(4108x+x^{2}+4\right)\times \frac{7}{23}\mathrm{d}x
4108x ପାଇବାକୁ 4112x ଏବଂ -4x ସମ୍ମେଳନ କରନ୍ତୁ.
\int _{2}^{7}4108x\times \frac{7}{23}+x^{2}\times \frac{7}{23}+4\times \frac{7}{23}\mathrm{d}x
4108x+x^{2}+4 କୁ \frac{7}{23} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\int _{2}^{7}\frac{4108\times 7}{23}x+x^{2}\times \frac{7}{23}+4\times \frac{7}{23}\mathrm{d}x
4108\times \frac{7}{23} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\int _{2}^{7}\frac{28756}{23}x+x^{2}\times \frac{7}{23}+4\times \frac{7}{23}\mathrm{d}x
28756 ପ୍ରାପ୍ତ କରିବାକୁ 4108 ଏବଂ 7 ଗୁଣନ କରନ୍ତୁ.
\int _{2}^{7}\frac{28756}{23}x+x^{2}\times \frac{7}{23}+\frac{4\times 7}{23}\mathrm{d}x
4\times \frac{7}{23} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\int _{2}^{7}\frac{28756}{23}x+x^{2}\times \frac{7}{23}+\frac{28}{23}\mathrm{d}x
28 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 7 ଗୁଣନ କରନ୍ତୁ.
\int \frac{28756x+7x^{2}+28}{23}\mathrm{d}x
ପ୍ରଥମେ ଅନିର୍ଦ୍ଦିଷ୍ଟ ଇଣ୍ଟିଗ୍ରାଲ୍‍‌ର ମୂଲ୍ୟାଙ୍କନ କରନ୍ତୁ।
\int \frac{28756x}{23}\mathrm{d}x+\int \frac{7x^{2}}{23}\mathrm{d}x+\int \frac{28}{23}\mathrm{d}x
ସମଷ୍ଟିକୁ ପଦରେ ପଦ ଏକତ୍ର କରନ୍ତୁ
\frac{28756\int x\mathrm{d}x}{23}+\frac{7\int x^{2}\mathrm{d}x}{23}+\int \frac{28}{23}\mathrm{d}x
ପ୍ରତ୍ୟେକ ପଦରେ ସ୍ଥିରାଙ୍କର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ।
\frac{14378x^{2}}{23}+\frac{7\int x^{2}\mathrm{d}x}{23}+\int \frac{28}{23}\mathrm{d}x
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x\mathrm{d}xକୁ \frac{x^{2}}{2}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। \frac{28756}{23} କୁ \frac{x^{2}}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{14378x^{2}}{23}+\frac{7x^{3}}{69}+\int \frac{28}{23}\mathrm{d}x
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x^{2}\mathrm{d}xକୁ \frac{x^{3}}{3}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। \frac{7}{23} କୁ \frac{x^{3}}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{14378x^{2}}{23}+\frac{7x^{3}}{69}+\frac{28x}{23}
ସାଧାରଣ ଇଣ୍ଟିଗ୍ରାଲ୍‍‌ ନିୟମର ସାରଣୀ \int a\mathrm{d}x=ax ବ୍ୟବହାର କରି \frac{28}{23}ର ଇଣ୍ଟିଗ୍ରାଲ୍ ଖୋଜନ୍ତୁ।
\frac{14378}{23}\times 7^{2}+\frac{7}{69}\times 7^{3}+\frac{28}{23}\times 7-\left(\frac{14378}{23}\times 2^{2}+\frac{7}{69}\times 2^{3}+\frac{28}{23}\times 2\right)
ନିର୍ଦ୍ଦିଷ୍ଟ ସମାକଳ, ପ୍ରତିଅବକଳଜର ଏପରି ବ୍ୟାଖ୍ୟା ଯାହା ଇଣ୍ଟିଗ୍ରେସନ୍‍‌ର ଉଚ୍ଚତର ସୀମା ବିଯୁକ୍ତ ନିମ୍ନତର ସୀମାରେ ମୂଲ୍ୟାଙ୍କିତ କରାଯାଇଛି।
\frac{1943795}{69}
ସରଳୀକୃତ କରିବା.