ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\int 27t^{3}+162t^{2}+324t+216\mathrm{d}t
ପ୍ରଥମେ ଅନିର୍ଦ୍ଦିଷ୍ଟ ଇଣ୍ଟିଗ୍ରାଲ୍‍‌ର ମୂଲ୍ୟାଙ୍କନ କରନ୍ତୁ।
\int 27t^{3}\mathrm{d}t+\int 162t^{2}\mathrm{d}t+\int 324t\mathrm{d}t+\int 216\mathrm{d}t
ସମଷ୍ଟିକୁ ପଦରେ ପଦ ଏକତ୍ର କରନ୍ତୁ
27\int t^{3}\mathrm{d}t+162\int t^{2}\mathrm{d}t+324\int t\mathrm{d}t+\int 216\mathrm{d}t
ପ୍ରତ୍ୟେକ ପଦରେ ସ୍ଥିରାଙ୍କର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ।
\frac{27t^{4}}{4}+162\int t^{2}\mathrm{d}t+324\int t\mathrm{d}t+\int 216\mathrm{d}t
ଯେହେତୁ k\neq -1 ପାଇଁ \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1}, ତେଣୁ \int t^{3}\mathrm{d}tକୁ \frac{t^{4}}{4}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। 27 କୁ \frac{t^{4}}{4} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{27t^{4}}{4}+54t^{3}+324\int t\mathrm{d}t+\int 216\mathrm{d}t
ଯେହେତୁ k\neq -1 ପାଇଁ \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1}, ତେଣୁ \int t^{2}\mathrm{d}tକୁ \frac{t^{3}}{3}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। 162 କୁ \frac{t^{3}}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{27t^{4}}{4}+54t^{3}+162t^{2}+\int 216\mathrm{d}t
ଯେହେତୁ k\neq -1 ପାଇଁ \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1}, ତେଣୁ \int t\mathrm{d}tକୁ \frac{t^{2}}{2}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। 324 କୁ \frac{t^{2}}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{27t^{4}}{4}+54t^{3}+162t^{2}+216t
ସାଧାରଣ ଇଣ୍ଟିଗ୍ରାଲ୍‍‌ ନିୟମର ସାରଣୀ \int a\mathrm{d}t=at ବ୍ୟବହାର କରି 216ର ଇଣ୍ଟିଗ୍ରାଲ୍ ଖୋଜନ୍ତୁ।
\frac{27}{4}\times 5^{4}+54\times 5^{3}+162\times 5^{2}+216\times 5-\left(\frac{27}{4}\times 1^{4}+54\times 1^{3}+162\times 1^{2}+216\times 1\right)
ନିର୍ଦ୍ଦିଷ୍ଟ ସମାକଳ, ପ୍ରତିଅବକଳଜର ଏପରି ବ୍ୟାଖ୍ୟା ଯାହା ଇଣ୍ଟିଗ୍ରେସନ୍‍‌ର ଉଚ୍ଚତର ସୀମା ବିଯୁକ୍ତ ନିମ୍ନତର ସୀମାରେ ମୂଲ୍ୟାଙ୍କିତ କରାଯାଇଛି।
15660
ସରଳୀକୃତ କରିବା.