ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\int 1+5x-x^{2}-4x-x^{2}\mathrm{d}x
ପ୍ରଥମେ ଅନିର୍ଦ୍ଦିଷ୍ଟ ଇଣ୍ଟିଗ୍ରାଲ୍‍‌ର ମୂଲ୍ୟାଙ୍କନ କରନ୍ତୁ।
\int 1\mathrm{d}x+\int 5x\mathrm{d}x+\int -x^{2}\mathrm{d}x+\int -4x\mathrm{d}x+\int -x^{2}\mathrm{d}x
ସମଷ୍ଟିକୁ ପଦରେ ପଦ ଏକତ୍ର କରନ୍ତୁ
\int 1\mathrm{d}x+5\int x\mathrm{d}x-\int x^{2}\mathrm{d}x-4\int x\mathrm{d}x-\int x^{2}\mathrm{d}x
ପ୍ରତ୍ୟେକ ପଦରେ ସ୍ଥିରାଙ୍କର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ।
x+5\int x\mathrm{d}x-\int x^{2}\mathrm{d}x-4\int x\mathrm{d}x-\int x^{2}\mathrm{d}x
ସାଧାରଣ ଇଣ୍ଟିଗ୍ରାଲ୍‍‌ ନିୟମର ସାରଣୀ \int a\mathrm{d}x=ax ବ୍ୟବହାର କରି 1ର ଇଣ୍ଟିଗ୍ରାଲ୍ ଖୋଜନ୍ତୁ।
x+\frac{5x^{2}}{2}-\int x^{2}\mathrm{d}x-4\int x\mathrm{d}x-\int x^{2}\mathrm{d}x
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x\mathrm{d}xକୁ \frac{x^{2}}{2}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। 5 କୁ \frac{x^{2}}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
x+\frac{5x^{2}}{2}-\frac{x^{3}}{3}-4\int x\mathrm{d}x-\int x^{2}\mathrm{d}x
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x^{2}\mathrm{d}xକୁ \frac{x^{3}}{3}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। -1 କୁ \frac{x^{3}}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
x+\frac{5x^{2}}{2}-\frac{x^{3}}{3}-2x^{2}-\int x^{2}\mathrm{d}x
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x\mathrm{d}xକୁ \frac{x^{2}}{2}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। -4 କୁ \frac{x^{2}}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
x+\frac{5x^{2}}{2}-\frac{x^{3}}{3}-2x^{2}-\frac{x^{3}}{3}
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x^{2}\mathrm{d}xକୁ \frac{x^{3}}{3}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। -1 କୁ \frac{x^{3}}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
x+\frac{x^{2}}{2}-\frac{2x^{3}}{3}
ସରଳୀକୃତ କରିବା.
3+\frac{3^{2}}{2}-\frac{2}{3}\times 3^{3}-\left(1+\frac{1^{2}}{2}-\frac{2}{3}\times 1^{3}\right)
ନିର୍ଦ୍ଦିଷ୍ଟ ସମାକଳ, ପ୍ରତିଅବକଳଜର ଏପରି ବ୍ୟାଖ୍ୟା ଯାହା ଇଣ୍ଟିଗ୍ରେସନ୍‍‌ର ଉଚ୍ଚତର ସୀମା ବିଯୁକ୍ତ ନିମ୍ନତର ସୀମାରେ ମୂଲ୍ୟାଙ୍କିତ କରାଯାଇଛି।
-\frac{34}{3}
ସରଳୀକୃତ କରିବା.