ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\int _{1}^{2}\left(\left(x^{3}\right)^{2}+10x^{3}+25\right)\times 3x^{2}\mathrm{d}x
\left(x^{3}+5\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
\int _{1}^{2}\left(x^{6}+10x^{3}+25\right)\times 3x^{2}\mathrm{d}x
ଏକ ସଂଖ୍ୟାର ପାୱାର୍‌ ଅନ୍ୟ ଏକ ପାୱାର୍‌କୁ ବୃଦ୍ଧି କରିବାକୁ, ଘାତାଙ୍କଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ. 6 ପାଇବାକୁ 3 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
\int _{1}^{2}\left(3x^{6}+30x^{3}+75\right)x^{2}\mathrm{d}x
x^{6}+10x^{3}+25 କୁ 3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\int _{1}^{2}3x^{8}+30x^{5}+75x^{2}\mathrm{d}x
3x^{6}+30x^{3}+75 କୁ x^{2} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\int 3x^{8}+30x^{5}+75x^{2}\mathrm{d}x
ପ୍ରଥମେ ଅନିର୍ଦ୍ଦିଷ୍ଟ ଇଣ୍ଟିଗ୍ରାଲ୍‍‌ର ମୂଲ୍ୟାଙ୍କନ କରନ୍ତୁ।
\int 3x^{8}\mathrm{d}x+\int 30x^{5}\mathrm{d}x+\int 75x^{2}\mathrm{d}x
ସମଷ୍ଟିକୁ ପଦରେ ପଦ ଏକତ୍ର କରନ୍ତୁ
3\int x^{8}\mathrm{d}x+30\int x^{5}\mathrm{d}x+75\int x^{2}\mathrm{d}x
ପ୍ରତ୍ୟେକ ପଦରେ ସ୍ଥିରାଙ୍କର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ।
\frac{x^{9}}{3}+30\int x^{5}\mathrm{d}x+75\int x^{2}\mathrm{d}x
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x^{8}\mathrm{d}xକୁ \frac{x^{9}}{9}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। 3 କୁ \frac{x^{9}}{9} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{x^{9}}{3}+5x^{6}+75\int x^{2}\mathrm{d}x
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x^{5}\mathrm{d}xକୁ \frac{x^{6}}{6}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। 30 କୁ \frac{x^{6}}{6} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{x^{9}}{3}+5x^{6}+25x^{3}
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x^{2}\mathrm{d}xକୁ \frac{x^{3}}{3}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। 75 କୁ \frac{x^{3}}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
25\times 2^{3}+5\times 2^{6}+\frac{2^{9}}{3}-\left(25\times 1^{3}+5\times 1^{6}+\frac{1^{9}}{3}\right)
ନିର୍ଦ୍ଦିଷ୍ଟ ସମାକଳ, ପ୍ରତିଅବକଳଜର ଏପରି ବ୍ୟାଖ୍ୟା ଯାହା ଇଣ୍ଟିଗ୍ରେସନ୍‍‌ର ଉଚ୍ଚତର ସୀମା ବିଯୁକ୍ତ ନିମ୍ନତର ସୀମାରେ ମୂଲ୍ୟାଙ୍କିତ କରାଯାଇଛି।
\frac{1981}{3}
ସରଳୀକୃତ କରିବା.