ମୂଲ୍ୟାୟନ କରିବା
\frac{81}{8}=10.125
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\int _{1}^{2}\left(\left(x^{2}\right)^{3}-3\left(x^{2}\right)^{2}+3x^{2}-1\right)x\mathrm{d}x
\left(x^{2}-1\right)^{3} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} ବ୍ୟବହାର କରନ୍ତୁ.
\int _{1}^{2}\left(x^{6}-3\left(x^{2}\right)^{2}+3x^{2}-1\right)x\mathrm{d}x
ଏକ ସଂଖ୍ୟାର ପାୱାର୍ ଅନ୍ୟ ଏକ ପାୱାର୍କୁ ବୃଦ୍ଧି କରିବାକୁ, ଘାତାଙ୍କଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ. 6 ପାଇବାକୁ 2 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
\int _{1}^{2}\left(x^{6}-3x^{4}+3x^{2}-1\right)x\mathrm{d}x
ଏକ ସଂଖ୍ୟାର ପାୱାର୍ ଅନ୍ୟ ଏକ ପାୱାର୍କୁ ବୃଦ୍ଧି କରିବାକୁ, ଘାତାଙ୍କଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ. 4 ପାଇବାକୁ 2 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
\int _{1}^{2}x^{7}-3x^{5}+3x^{3}-x\mathrm{d}x
x^{6}-3x^{4}+3x^{2}-1 କୁ x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\int x^{7}-3x^{5}+3x^{3}-x\mathrm{d}x
ପ୍ରଥମେ ଅନିର୍ଦ୍ଦିଷ୍ଟ ଇଣ୍ଟିଗ୍ରାଲ୍ର ମୂଲ୍ୟାଙ୍କନ କରନ୍ତୁ।
\int x^{7}\mathrm{d}x+\int -3x^{5}\mathrm{d}x+\int 3x^{3}\mathrm{d}x+\int -x\mathrm{d}x
ସମଷ୍ଟିକୁ ପଦରେ ପଦ ଏକତ୍ର କରନ୍ତୁ
\int x^{7}\mathrm{d}x-3\int x^{5}\mathrm{d}x+3\int x^{3}\mathrm{d}x-\int x\mathrm{d}x
ପ୍ରତ୍ୟେକ ପଦରେ ସ୍ଥିରାଙ୍କର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ।
\frac{x^{8}}{8}-3\int x^{5}\mathrm{d}x+3\int x^{3}\mathrm{d}x-\int x\mathrm{d}x
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x^{7}\mathrm{d}xକୁ \frac{x^{8}}{8}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ।
\frac{x^{8}}{8}-\frac{x^{6}}{2}+3\int x^{3}\mathrm{d}x-\int x\mathrm{d}x
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x^{5}\mathrm{d}xକୁ \frac{x^{6}}{6}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। -3 କୁ \frac{x^{6}}{6} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{x^{8}}{8}-\frac{x^{6}}{2}+\frac{3x^{4}}{4}-\int x\mathrm{d}x
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x^{3}\mathrm{d}xକୁ \frac{x^{4}}{4}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। 3 କୁ \frac{x^{4}}{4} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{x^{8}}{8}-\frac{x^{6}}{2}+\frac{3x^{4}}{4}-\frac{x^{2}}{2}
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x\mathrm{d}xକୁ \frac{x^{2}}{2}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। -1 କୁ \frac{x^{2}}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
-\frac{x^{2}}{2}+\frac{3x^{4}}{4}-\frac{x^{6}}{2}+\frac{x^{8}}{8}
ସରଳୀକୃତ କରିବା.
-\frac{2^{2}}{2}+\frac{3}{4}\times 2^{4}-\frac{2^{6}}{2}+\frac{2^{8}}{8}-\left(-\frac{1^{2}}{2}+\frac{3}{4}\times 1^{4}-\frac{1^{6}}{2}+\frac{1^{8}}{8}\right)
ନିର୍ଦ୍ଦିଷ୍ଟ ସମାକଳ, ପ୍ରତିଅବକଳଜର ଏପରି ବ୍ୟାଖ୍ୟା ଯାହା ଇଣ୍ଟିଗ୍ରେସନ୍ର ଉଚ୍ଚତର ସୀମା ବିଯୁକ୍ତ ନିମ୍ନତର ସୀମାରେ ମୂଲ୍ୟାଙ୍କିତ କରାଯାଇଛି।
\frac{81}{8}
ସରଳୀକୃତ କରିବା.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}