ମୂଲ୍ୟାୟନ କରିବା
\frac{\sin(\omega _{d}\left(t-2\pi \right))}{e^{\xi \omega \left(t-2\pi \right)}}
w.r.t. ξ ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
-\frac{\omega \left(t-2\pi \right)\sin(\omega _{d}\left(t-2\pi \right))}{e^{\xi \omega \left(t-2\pi \right)}}
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\int_{0}^{1} {e ^ {-\xi \omega {(t - 2 * \pi)}} \sin(\omega_{d} {(t - 2 * \pi)})} d\tau
\tau ସ୍ଥାନରେ 2 * \pi ପ୍ରତିବଦଳ କରନ୍ତୁ.
\int \frac{\sin(\omega _{d}\left(t-2\pi \right))}{e^{\xi \omega \left(t-2\pi \right)}}\mathrm{d}\tau
ପ୍ରଥମେ ଅନିର୍ଦ୍ଦିଷ୍ଟ ଇଣ୍ଟିଗ୍ରାଲ୍ର ମୂଲ୍ୟାଙ୍କନ କରନ୍ତୁ।
\frac{\sin(\omega _{d}\left(t-2\pi \right))}{e^{\xi \omega \left(t-2\pi \right)}}\tau
ସାଧାରଣ ଇଣ୍ଟିଗ୍ରାଲ୍ ନିୟମର ସାରଣୀ \int a\mathrm{d}\tau =a\tau ବ୍ୟବହାର କରି \frac{\sin(\omega _{d}\left(t-2\pi \right))}{e^{\xi \omega \left(t-2\pi \right)}}ର ଇଣ୍ଟିଗ୍ରାଲ୍ ଖୋଜନ୍ତୁ।
\frac{\sin(\omega _{d}\left(t-2\pi \right))\tau }{e^{\xi \omega \left(t-2\pi \right)}}
ସରଳୀକୃତ କରିବା.
e^{-\xi \omega \left(t-2\pi \right)}\sin(\omega _{d}\left(t-2\pi \right))+0e^{-\xi \omega \left(t-2\pi \right)}\sin(\omega _{d}\left(t-2\pi \right))
ନିର୍ଦ୍ଦିଷ୍ଟ ସମାକଳ, ପ୍ରତିଅବକଳଜର ଏପରି ବ୍ୟାଖ୍ୟା ଯାହା ଇଣ୍ଟିଗ୍ରେସନ୍ର ଉଚ୍ଚତର ସୀମା ବିଯୁକ୍ତ ନିମ୍ନତର ସୀମାରେ ମୂଲ୍ୟାଙ୍କିତ କରାଯାଇଛି।
\frac{\sin(\omega _{d}\left(t-2\pi \right))}{e^{\xi \omega \left(t-2\pi \right)}}
ସରଳୀକୃତ କରିବା.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}