ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\int 2^{x}+x^{2}\mathrm{d}x
ପ୍ରଥମେ ଅନିର୍ଦ୍ଦିଷ୍ଟ ଇଣ୍ଟିଗ୍ରାଲ୍‍‌ର ମୂଲ୍ୟାଙ୍କନ କରନ୍ତୁ।
\int 2^{x}\mathrm{d}x+\int x^{2}\mathrm{d}x
ସମଷ୍ଟିକୁ ପଦରେ ପଦ ଏକତ୍ର କରନ୍ତୁ
\frac{2^{x}}{\ln(2)}+\int x^{2}\mathrm{d}x
ଫଳାଫଳ ପ୍ରାପ୍ତ କରିବାକୁ ସାଧାରଣ ଇଣ୍ଟିଗ୍ରାଲ୍‍‌ର ସାରଣୀରୁ \int x^{k}\mathrm{d}k=\frac{x^{k}}{\ln(x)}କୁ ବ୍ୟବହାର କରନ୍ତୁ।
\frac{2^{x}}{\ln(2)}+\frac{x^{3}}{3}
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x^{2}\mathrm{d}xକୁ \frac{x^{3}}{3}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ।
2^{1}\ln(2)^{-1}+\frac{1^{3}}{3}-\left(2^{0}\ln(2)^{-1}+\frac{0^{3}}{3}\right)
ନିର୍ଦ୍ଦିଷ୍ଟ ସମାକଳ, ପ୍ରତିଅବକଳଜର ଏପରି ବ୍ୟାଖ୍ୟା ଯାହା ଇଣ୍ଟିଗ୍ରେସନ୍‍‌ର ଉଚ୍ଚତର ସୀମା ବିଯୁକ୍ତ ନିମ୍ନତର ସୀମାରେ ମୂଲ୍ୟାଙ୍କିତ କରାଯାଇଛି।
\frac{1}{3}+\frac{1}{\ln(2)}
ସରଳୀକୃତ କରିବା.