ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\int _{0}^{1}2^{3}x\times 2x\mathrm{d}x
ସମାନ ଆଧାରର ପାୱାର୍‌ଗୁଡିକ ଗୁଣନ କରିବାକୁ, ସେଗୁଡିକର ଘାତାଙ୍କଗୁଡିକ ଯୋଡନ୍ତୁ. 3 ପାଇବାକୁ 2 ଏବଂ 1 ଯୋଡନ୍ତୁ.
\int _{0}^{1}2^{4}xx\mathrm{d}x
ସମାନ ଆଧାରର ପାୱାର୍‌ଗୁଡିକ ଗୁଣନ କରିବାକୁ, ସେଗୁଡିକର ଘାତାଙ୍କଗୁଡିକ ଯୋଡନ୍ତୁ. 4 ପାଇବାକୁ 3 ଏବଂ 1 ଯୋଡନ୍ତୁ.
\int _{0}^{1}2^{4}x^{2}\mathrm{d}x
x^{2} ପ୍ରାପ୍ତ କରିବାକୁ x ଏବଂ x ଗୁଣନ କରନ୍ତୁ.
\int _{0}^{1}16x^{2}\mathrm{d}x
4 ର 2 ପାୱାର୍‌ ହିସାବ କରନ୍ତୁ ଏବଂ 16 ପ୍ରାପ୍ତ କରନ୍ତୁ.
\int 16x^{2}\mathrm{d}x
ପ୍ରଥମେ ଅନିର୍ଦ୍ଦିଷ୍ଟ ଇଣ୍ଟିଗ୍ରାଲ୍‍‌ର ମୂଲ୍ୟାଙ୍କନ କରନ୍ତୁ।
16\int x^{2}\mathrm{d}x
\int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}xକୁ ବ୍ୟବହାର କରି ସ୍ଥିରାଙ୍କର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ।
\frac{16x^{3}}{3}
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x^{2}\mathrm{d}xକୁ \frac{x^{3}}{3}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ।
\frac{16}{3}\times 1^{3}-\frac{16}{3}\times 0^{3}
ନିର୍ଦ୍ଦିଷ୍ଟ ସମାକଳ, ପ୍ରତିଅବକଳଜର ଏପରି ବ୍ୟାଖ୍ୟା ଯାହା ଇଣ୍ଟିଗ୍ରେସନ୍‍‌ର ଉଚ୍ଚତର ସୀମା ବିଯୁକ୍ତ ନିମ୍ନତର ସୀମାରେ ମୂଲ୍ୟାଙ୍କିତ କରାଯାଇଛି।
\frac{16}{3}
ସରଳୀକୃତ କରିବା.