ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\int x^{3}-2x^{2}-13x\mathrm{d}x
ପ୍ରଥମେ ଅନିର୍ଦ୍ଦିଷ୍ଟ ଇଣ୍ଟିଗ୍ରାଲ୍‍‌ର ମୂଲ୍ୟାଙ୍କନ କରନ୍ତୁ।
\int x^{3}\mathrm{d}x+\int -2x^{2}\mathrm{d}x+\int -13x\mathrm{d}x
ସମଷ୍ଟିକୁ ପଦରେ ପଦ ଏକତ୍ର କରନ୍ତୁ
\int x^{3}\mathrm{d}x-2\int x^{2}\mathrm{d}x-13\int x\mathrm{d}x
ପ୍ରତ୍ୟେକ ପଦରେ ସ୍ଥିରାଙ୍କର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ।
\frac{x^{4}}{4}-2\int x^{2}\mathrm{d}x-13\int x\mathrm{d}x
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x^{3}\mathrm{d}xକୁ \frac{x^{4}}{4}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ।
\frac{x^{4}}{4}-\frac{2x^{3}}{3}-13\int x\mathrm{d}x
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x^{2}\mathrm{d}xକୁ \frac{x^{3}}{3}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। -2 କୁ \frac{x^{3}}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{x^{4}}{4}-\frac{2x^{3}}{3}-\frac{13x^{2}}{2}
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x\mathrm{d}xକୁ \frac{x^{2}}{2}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। -13 କୁ \frac{x^{2}}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{0^{4}}{4}-\frac{2}{3}\times 0^{3}-\frac{13}{2}\times 0^{2}-\left(\frac{\left(-1\right)^{4}}{4}-\frac{2}{3}\left(-1\right)^{3}-\frac{13}{2}\left(-1\right)^{2}\right)
ନିର୍ଦ୍ଦିଷ୍ଟ ସମାକଳ, ପ୍ରତିଅବକଳଜର ଏପରି ବ୍ୟାଖ୍ୟା ଯାହା ଇଣ୍ଟିଗ୍ରେସନ୍‍‌ର ଉଚ୍ଚତର ସୀମା ବିଯୁକ୍ତ ନିମ୍ନତର ସୀମାରେ ମୂଲ୍ୟାଙ୍କିତ କରାଯାଇଛି।
\frac{67}{12}
ସରଳୀକୃତ କରିବା.