ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\int x^{4}-\frac{x^{4}}{2}\mathrm{d}x
ପ୍ରଥମେ ଅନିର୍ଦ୍ଦିଷ୍ଟ ଇଣ୍ଟିଗ୍ରାଲ୍‍‌ର ମୂଲ୍ୟାଙ୍କନ କରନ୍ତୁ।
\int x^{4}\mathrm{d}x+\int -\frac{x^{4}}{2}\mathrm{d}x
ସମଷ୍ଟିକୁ ପଦରେ ପଦ ଏକତ୍ର କରନ୍ତୁ
\int x^{4}\mathrm{d}x-\frac{\int x^{4}\mathrm{d}x}{2}
ପ୍ରତ୍ୟେକ ପଦରେ ସ୍ଥିରାଙ୍କର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ।
\frac{x^{5}}{5}-\frac{\int x^{4}\mathrm{d}x}{2}
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x^{4}\mathrm{d}xକୁ \frac{x^{5}}{5}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ।
\frac{x^{5}}{5}-\frac{x^{5}}{10}
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x^{4}\mathrm{d}xକୁ \frac{x^{5}}{5}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। -\frac{1}{2} କୁ \frac{x^{5}}{5} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{x^{5}}{10}
ସରଳୀକୃତ କରିବା.
\frac{1^{5}}{10}-\frac{1}{10}\times \left(\frac{1}{2}\times 2^{\frac{1}{2}}\right)^{5}
ନିର୍ଦ୍ଦିଷ୍ଟ ସମାକଳ, ପ୍ରତିଅବକଳଜର ଏପରି ବ୍ୟାଖ୍ୟା ଯାହା ଇଣ୍ଟିଗ୍ରେସନ୍‍‌ର ଉଚ୍ଚତର ସୀମା ବିଯୁକ୍ତ ନିମ୍ନତର ସୀମାରେ ମୂଲ୍ୟାଙ୍କିତ କରାଯାଇଛି।
\frac{1}{10}-\frac{\sqrt{2}}{80}
ସରଳୀକୃତ କରିବା.