ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
w.r.t. x ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\int \left(x^{2}\right)^{3}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
\left(x^{2}+2\right)^{3} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} ବ୍ୟବହାର କରନ୍ତୁ.
\int x^{6}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
ଏକ ସଂଖ୍ୟାର ପାୱାର୍‌ ଅନ୍ୟ ଏକ ପାୱାର୍‌କୁ ବୃଦ୍ଧି କରିବାକୁ, ଘାତାଙ୍କଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ. 6 ପାଇବାକୁ 2 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
\int x^{6}+6x^{4}+12x^{2}+8\mathrm{d}x
ଏକ ସଂଖ୍ୟାର ପାୱାର୍‌ ଅନ୍ୟ ଏକ ପାୱାର୍‌କୁ ବୃଦ୍ଧି କରିବାକୁ, ଘାତାଙ୍କଗୁଡିକୁ ଗୁଣନ କରନ୍ତୁ. 4 ପାଇବାକୁ 2 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
\int x^{6}\mathrm{d}x+\int 6x^{4}\mathrm{d}x+\int 12x^{2}\mathrm{d}x+\int 8\mathrm{d}x
ସମଷ୍ଟିକୁ ପଦରେ ପଦ ଏକତ୍ର କରନ୍ତୁ
\int x^{6}\mathrm{d}x+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
ପ୍ରତ୍ୟେକ ପଦରେ ସ୍ଥିରାଙ୍କର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ।
\frac{x^{7}}{7}+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x^{6}\mathrm{d}xକୁ \frac{x^{7}}{7}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ।
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x^{4}\mathrm{d}xକୁ \frac{x^{5}}{5}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। 6 କୁ \frac{x^{5}}{5} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+\int 8\mathrm{d}x
ଯେହେତୁ k\neq -1 ପାଇଁ \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ତେଣୁ \int x^{2}\mathrm{d}xକୁ \frac{x^{3}}{3}ରେ ପ୍ରତିସ୍ଥାପନ କରନ୍ତୁ। 12 କୁ \frac{x^{3}}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+8x
ସାଧାରଣ ଇଣ୍ଟିଗ୍ରାଲ୍‍‌ ନିୟମର ସାରଣୀ \int a\mathrm{d}x=ax ବ୍ୟବହାର କରି 8ର ଇଣ୍ଟିଗ୍ରାଲ୍ ଖୋଜନ୍ତୁ।
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}
ସରଳୀକୃତ କରିବା.
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}+С
ଯଦି F\left(x\right), f\left(x\right)ର ଏକ ଆଣ୍ଟିଡେରିଭେଟିଭ୍‌ ଅଟେ, ତେବେ f\left(x\right)ର ସମସ୍ତ ଆଣ୍ଟିଡେରିଭେଟିଭ୍‌ F\left(x\right)+C ଦ୍ୱାରା ଦିଆଯାଇଛି। ତେଣୁ ଫଳାଫଳରେ ଇଣ୍ଟିଗ୍ରେସନ୍‍‌ର ସ୍ଥିରାଙ୍କ C\in \mathrm{R}କୁ ଯୋଗ କରନ୍ତୁ।