ମୂଲ୍ୟାୟନ କରିବା
\frac{u\cos(x)}{\sin(x)+\cos(x)}+С
\nexists n_{1}\in \mathrm{Z}\text{ : }x=\pi n_{1}+\frac{3\pi }{4}
w.r.t. x ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
-\frac{u}{\left(\sin(x)+\cos(x)\right)^{2}}
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{u}{1+\frac{\sin(x)}{\cos(x)}}
ସାଧାରଣ ଇଣ୍ଟିଗ୍ରାଲ୍ ନିୟମର ସାରଣୀ \int a\mathrm{d}u=au ବ୍ୟବହାର କରି \frac{1}{1+\frac{\sin(x)}{\cos(x)}}ର ଇଣ୍ଟିଗ୍ରାଲ୍ ଖୋଜନ୍ତୁ।
\frac{\cos(x)u}{\cos(x)+\sin(x)}
ସରଳୀକୃତ କରିବା.
\begin{matrix}\frac{\cos(x)u}{\cos(x)+\sin(x)}+С_{3},&\end{matrix}
ଯଦି F\left(u\right), f\left(u\right)ର ଏକ ଆଣ୍ଟିଡେରିଭେଟିଭ୍ ଅଟେ, ତେବେ f\left(u\right)ର ସମସ୍ତ ଆଣ୍ଟିଡେରିଭେଟିଭ୍ F\left(u\right)+C ଦ୍ୱାରା ଦିଆଯାଇଛି। ତେଣୁ ଫଳାଫଳରେ ଇଣ୍ଟିଗ୍ରେସନ୍ର ସ୍ଥିରାଙ୍କ C\in \mathrm{R}କୁ ଯୋଗ କରନ୍ତୁ।
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}