x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
x-3=2\left(x-3\right)\left(x-2\right)
ଭାରିଏବୁଲ୍ x ମୂଲ୍ୟଗୁଡିକ 2,3 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(x-3\right)\left(x-2\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
x-3=\left(2x-6\right)\left(x-2\right)
2 କୁ x-3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x-3=2x^{2}-10x+12
2x-6 କୁ x-2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
x-3-2x^{2}=-10x+12
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x^{2} ବିୟୋଗ କରନ୍ତୁ.
x-3-2x^{2}+10x=12
ଉଭୟ ପାର୍ଶ୍ଵକୁ 10x ଯୋଡନ୍ତୁ.
11x-3-2x^{2}=12
11x ପାଇବାକୁ x ଏବଂ 10x ସମ୍ମେଳନ କରନ୍ତୁ.
11x-3-2x^{2}-12=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 12 ବିୟୋଗ କରନ୍ତୁ.
11x-15-2x^{2}=0
-15 ପ୍ରାପ୍ତ କରିବାକୁ -3 ଏବଂ 12 ବିୟୋଗ କରନ୍ତୁ.
-2x^{2}+11x-15=0
ଏହାକୁ ଏକ ମାନାଙ୍କ ରୂପେରେ ରଖିବା ପାଇଁ ପଲିନୋମିଆଲକୁ ପୁନଃବ୍ୟବସ୍ଥିତ କରନ୍ତୁ. ବଡରୁ ସାନ ପାୱାର୍ କ୍ରମରେ ପଦଗୁଡିକୁ ରଖନ୍ତୁ.
a+b=11 ab=-2\left(-15\right)=30
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ -2x^{2}+ax+bx-15 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍ ସେଟ୍ ଅପ୍ କରନ୍ତୁ.
1,30 2,15 3,10 5,6
ଯେହେତୁ ab ଧନାତ୍ମକ ଅଟେ, a ଏବଂ b ର ସମାନ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁa+b ଧନାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ଧନାତ୍ମକ ଅଟେ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ 30 ପ୍ରଦାନ କରିଥାଏ.
1+30=31 2+15=17 3+10=13 5+6=11
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=6 b=5
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 11 ପ୍ରଦାନ କରିଥାଏ.
\left(-2x^{2}+6x\right)+\left(5x-15\right)
\left(-2x^{2}+6x\right)+\left(5x-15\right) ଭାବରେ -2x^{2}+11x-15 ପୁନଃ ଲେଖନ୍ତୁ.
2x\left(-x+3\right)-5\left(-x+3\right)
ପ୍ରଥମଟିରେ 2x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ -5 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(-x+3\right)\left(2x-5\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ -x+3 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=3 x=\frac{5}{2}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, -x+3=0 ଏବଂ 2x-5=0 ସମାଧାନ କରନ୍ତୁ.
x=\frac{5}{2}
ଭାରିଏବୁଲ୍ x 3 ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ.
x-3=2\left(x-3\right)\left(x-2\right)
ଭାରିଏବୁଲ୍ x ମୂଲ୍ୟଗୁଡିକ 2,3 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(x-3\right)\left(x-2\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
x-3=\left(2x-6\right)\left(x-2\right)
2 କୁ x-3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x-3=2x^{2}-10x+12
2x-6 କୁ x-2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
x-3-2x^{2}=-10x+12
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x^{2} ବିୟୋଗ କରନ୍ତୁ.
x-3-2x^{2}+10x=12
ଉଭୟ ପାର୍ଶ୍ଵକୁ 10x ଯୋଡନ୍ତୁ.
11x-3-2x^{2}=12
11x ପାଇବାକୁ x ଏବଂ 10x ସମ୍ମେଳନ କରନ୍ତୁ.
11x-3-2x^{2}-12=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 12 ବିୟୋଗ କରନ୍ତୁ.
11x-15-2x^{2}=0
-15 ପ୍ରାପ୍ତ କରିବାକୁ -3 ଏବଂ 12 ବିୟୋଗ କରନ୍ତୁ.
-2x^{2}+11x-15=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-11±\sqrt{11^{2}-4\left(-2\right)\left(-15\right)}}{2\left(-2\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ -2, b ପାଇଁ 11, ଏବଂ c ପାଇଁ -15 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-11±\sqrt{121-4\left(-2\right)\left(-15\right)}}{2\left(-2\right)}
ବର୍ଗ 11.
x=\frac{-11±\sqrt{121+8\left(-15\right)}}{2\left(-2\right)}
-4 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-11±\sqrt{121-120}}{2\left(-2\right)}
8 କୁ -15 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-11±\sqrt{1}}{2\left(-2\right)}
121 କୁ -120 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-11±1}{2\left(-2\right)}
1 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-11±1}{-4}
2 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=-\frac{10}{-4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-11±1}{-4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -11 କୁ 1 ସହ ଯୋଡନ୍ତୁ.
x=\frac{5}{2}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-10}{-4} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{12}{-4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-11±1}{-4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -11 ରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
x=3
-12 କୁ -4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{5}{2} x=3
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x=\frac{5}{2}
ଭାରିଏବୁଲ୍ x 3 ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ.
x-3=2\left(x-3\right)\left(x-2\right)
ଭାରିଏବୁଲ୍ x ମୂଲ୍ୟଗୁଡିକ 2,3 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(x-3\right)\left(x-2\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
x-3=\left(2x-6\right)\left(x-2\right)
2 କୁ x-3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x-3=2x^{2}-10x+12
2x-6 କୁ x-2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
x-3-2x^{2}=-10x+12
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x^{2} ବିୟୋଗ କରନ୍ତୁ.
x-3-2x^{2}+10x=12
ଉଭୟ ପାର୍ଶ୍ଵକୁ 10x ଯୋଡନ୍ତୁ.
11x-3-2x^{2}=12
11x ପାଇବାକୁ x ଏବଂ 10x ସମ୍ମେଳନ କରନ୍ତୁ.
11x-2x^{2}=12+3
ଉଭୟ ପାର୍ଶ୍ଵକୁ 3 ଯୋଡନ୍ତୁ.
11x-2x^{2}=15
15 ପ୍ରାପ୍ତ କରିବାକୁ 12 ଏବଂ 3 ଯୋଗ କରନ୍ତୁ.
-2x^{2}+11x=15
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-2x^{2}+11x}{-2}=\frac{15}{-2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{11}{-2}x=\frac{15}{-2}
-2 ଦ୍ୱାରା ବିଭାଜନ କରିବା -2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}-\frac{11}{2}x=\frac{15}{-2}
11 କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{11}{2}x=-\frac{15}{2}
15 କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-\frac{11}{2}x+\left(-\frac{11}{4}\right)^{2}=-\frac{15}{2}+\left(-\frac{11}{4}\right)^{2}
-\frac{11}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -\frac{11}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -\frac{11}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-\frac{11}{2}x+\frac{121}{16}=-\frac{15}{2}+\frac{121}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା -\frac{11}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}-\frac{11}{2}x+\frac{121}{16}=\frac{1}{16}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{121}{16} ସହିତ -\frac{15}{2} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x-\frac{11}{4}\right)^{2}=\frac{1}{16}
ଗୁଣନୀୟକ x^{2}-\frac{11}{2}x+\frac{121}{16}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-\frac{11}{4}\right)^{2}}=\sqrt{\frac{1}{16}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-\frac{11}{4}=\frac{1}{4} x-\frac{11}{4}=-\frac{1}{4}
ସରଳୀକୃତ କରିବା.
x=3 x=\frac{5}{2}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{11}{4} ଯୋଡନ୍ତୁ.
x=\frac{5}{2}
ଭାରିଏବୁଲ୍ x 3 ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}