ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
ପ୍ରସାରଣ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\frac{\left(x-1\right)\left(\left(\frac{x}{5}\right)^{3}-\frac{1}{5}\right)}{5}
\frac{5}{\left(\frac{x}{5}\right)^{3}-\frac{1}{5}} ର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା x-1 କୁ ଗୁଣନ କରି x-1 କୁ \frac{5}{\left(\frac{x}{5}\right)^{3}-\frac{1}{5}} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{\left(x-1\right)\left(\frac{x^{3}}{5^{3}}-\frac{1}{5}\right)}{5}
\frac{x}{5} କୁ ଏକ ପାୱାରକୁ ବୃଦ୍ଧି କରିବାକୁ, ଉଭୟ ଲବ ଓ ହରକୁ ପାୱାରକୁ ବୃଦ୍ଧି କରନ୍ତୁ ଏବଂ ତାପରେ ବିଭାଜନ କରନ୍ତୁ.
\frac{\left(x-1\right)\left(\frac{x^{3}}{125}-\frac{25}{125}\right)}{5}
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 5^{3} ଏବଂ 5 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 125. \frac{1}{5} କୁ \frac{25}{25} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\left(x-1\right)\times \frac{x^{3}-25}{125}}{5}
ଯେହେତୁ \frac{x^{3}}{125} ଏବଂ \frac{25}{125} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{\frac{\left(x-1\right)\left(x^{3}-25\right)}{125}}{5}
\left(x-1\right)\times \frac{x^{3}-25}{125} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\frac{\left(x-1\right)\left(x^{3}-25\right)}{125\times 5}
\frac{\frac{\left(x-1\right)\left(x^{3}-25\right)}{125}}{5} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\frac{\left(x-1\right)\left(x^{3}-25\right)}{625}
625 ପ୍ରାପ୍ତ କରିବାକୁ 125 ଏବଂ 5 ଗୁଣନ କରନ୍ତୁ.
\frac{x^{4}-25x-x^{3}+25}{625}
x-1 କୁ x^{3}-25 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\frac{\left(x-1\right)\left(\left(\frac{x}{5}\right)^{3}-\frac{1}{5}\right)}{5}
\frac{5}{\left(\frac{x}{5}\right)^{3}-\frac{1}{5}} ର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା x-1 କୁ ଗୁଣନ କରି x-1 କୁ \frac{5}{\left(\frac{x}{5}\right)^{3}-\frac{1}{5}} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{\left(x-1\right)\left(\frac{x^{3}}{5^{3}}-\frac{1}{5}\right)}{5}
\frac{x}{5} କୁ ଏକ ପାୱାରକୁ ବୃଦ୍ଧି କରିବାକୁ, ଉଭୟ ଲବ ଓ ହରକୁ ପାୱାରକୁ ବୃଦ୍ଧି କରନ୍ତୁ ଏବଂ ତାପରେ ବିଭାଜନ କରନ୍ତୁ.
\frac{\left(x-1\right)\left(\frac{x^{3}}{125}-\frac{25}{125}\right)}{5}
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 5^{3} ଏବଂ 5 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 125. \frac{1}{5} କୁ \frac{25}{25} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\left(x-1\right)\times \frac{x^{3}-25}{125}}{5}
ଯେହେତୁ \frac{x^{3}}{125} ଏବଂ \frac{25}{125} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{\frac{\left(x-1\right)\left(x^{3}-25\right)}{125}}{5}
\left(x-1\right)\times \frac{x^{3}-25}{125} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\frac{\left(x-1\right)\left(x^{3}-25\right)}{125\times 5}
\frac{\frac{\left(x-1\right)\left(x^{3}-25\right)}{125}}{5} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\frac{\left(x-1\right)\left(x^{3}-25\right)}{625}
625 ପ୍ରାପ୍ତ କରିବାକୁ 125 ଏବଂ 5 ଗୁଣନ କରନ୍ତୁ.
\frac{x^{4}-25x-x^{3}+25}{625}
x-1 କୁ x^{3}-25 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.