ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\left(x+6\right)\left(7+x\right)=10\times 2
ଭାରିଏବୁଲ୍‌ x -6 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 10\left(x+6\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 10,x+6 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
13x+x^{2}+42=10\times 2
x+6 କୁ 7+x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
13x+x^{2}+42=20
20 ପ୍ରାପ୍ତ କରିବାକୁ 10 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
13x+x^{2}+42-20=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 20 ବିୟୋଗ କରନ୍ତୁ.
13x+x^{2}+22=0
22 ପ୍ରାପ୍ତ କରିବାକୁ 42 ଏବଂ 20 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+13x+22=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-13±\sqrt{13^{2}-4\times 22}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 13, ଏବଂ c ପାଇଁ 22 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-13±\sqrt{169-4\times 22}}{2}
ବର୍ଗ 13.
x=\frac{-13±\sqrt{169-88}}{2}
-4 କୁ 22 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-13±\sqrt{81}}{2}
169 କୁ -88 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-13±9}{2}
81 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=-\frac{4}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-13±9}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -13 କୁ 9 ସହ ଯୋଡନ୍ତୁ.
x=-2
-4 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{22}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-13±9}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -13 ରୁ 9 ବିୟୋଗ କରନ୍ତୁ.
x=-11
-22 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-2 x=-11
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
\left(x+6\right)\left(7+x\right)=10\times 2
ଭାରିଏବୁଲ୍‌ x -6 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 10\left(x+6\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 10,x+6 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
13x+x^{2}+42=10\times 2
x+6 କୁ 7+x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
13x+x^{2}+42=20
20 ପ୍ରାପ୍ତ କରିବାକୁ 10 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
13x+x^{2}=20-42
ଉଭୟ ପାର୍ଶ୍ୱରୁ 42 ବିୟୋଗ କରନ୍ତୁ.
13x+x^{2}=-22
-22 ପ୍ରାପ୍ତ କରିବାକୁ 20 ଏବଂ 42 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+13x=-22
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
x^{2}+13x+\left(\frac{13}{2}\right)^{2}=-22+\left(\frac{13}{2}\right)^{2}
\frac{13}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 13 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{13}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+13x+\frac{169}{4}=-22+\frac{169}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{13}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+13x+\frac{169}{4}=\frac{81}{4}
-22 କୁ \frac{169}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x+\frac{13}{2}\right)^{2}=\frac{81}{4}
ଗୁଣନୀୟକ x^{2}+13x+\frac{169}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{13}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{13}{2}=\frac{9}{2} x+\frac{13}{2}=-\frac{9}{2}
ସରଳୀକୃତ କରିବା.
x=-2 x=-11
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{13}{2} ବିୟୋଗ କରନ୍ତୁ.