ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

4x-\frac{1}{2}x^{2}=\frac{15}{4}\times 2
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
4x-\frac{1}{2}x^{2}=\frac{15}{2}
\frac{15}{2} ପ୍ରାପ୍ତ କରିବାକୁ \frac{15}{4} ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
4x-\frac{1}{2}x^{2}-\frac{15}{2}=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{15}{2} ବିୟୋଗ କରନ୍ତୁ.
-\frac{1}{2}x^{2}+4x-\frac{15}{2}=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-4±\sqrt{4^{2}-4\left(-\frac{1}{2}\right)\left(-\frac{15}{2}\right)}}{2\left(-\frac{1}{2}\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -\frac{1}{2}, b ପାଇଁ 4, ଏବଂ c ପାଇଁ -\frac{15}{2} ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-4±\sqrt{16-4\left(-\frac{1}{2}\right)\left(-\frac{15}{2}\right)}}{2\left(-\frac{1}{2}\right)}
ବର୍ଗ 4.
x=\frac{-4±\sqrt{16+2\left(-\frac{15}{2}\right)}}{2\left(-\frac{1}{2}\right)}
-4 କୁ -\frac{1}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-4±\sqrt{16-15}}{2\left(-\frac{1}{2}\right)}
2 କୁ -\frac{15}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-4±\sqrt{1}}{2\left(-\frac{1}{2}\right)}
16 କୁ -15 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-4±1}{2\left(-\frac{1}{2}\right)}
1 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-4±1}{-1}
2 କୁ -\frac{1}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
x=-\frac{3}{-1}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-4±1}{-1} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -4 କୁ 1 ସହ ଯୋଡନ୍ତୁ.
x=3
-3 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{5}{-1}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-4±1}{-1} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -4 ରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
x=5
-5 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=3 x=5
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
4x-\frac{1}{2}x^{2}=\frac{15}{4}\times 2
ଉଭୟ ପାର୍ଶ୍ୱକୁ 2 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
4x-\frac{1}{2}x^{2}=\frac{15}{2}
\frac{15}{2} ପ୍ରାପ୍ତ କରିବାକୁ \frac{15}{4} ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
-\frac{1}{2}x^{2}+4x=\frac{15}{2}
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-\frac{1}{2}x^{2}+4x}{-\frac{1}{2}}=\frac{\frac{15}{2}}{-\frac{1}{2}}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -2 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
x^{2}+\frac{4}{-\frac{1}{2}}x=\frac{\frac{15}{2}}{-\frac{1}{2}}
-\frac{1}{2} ଦ୍ୱାରା ବିଭାଜନ କରିବା -\frac{1}{2} ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}-8x=\frac{\frac{15}{2}}{-\frac{1}{2}}
-\frac{1}{2} ର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା 4 କୁ ଗୁଣନ କରି 4 କୁ -\frac{1}{2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-8x=-15
-\frac{1}{2} ର ରେସିପ୍ରୋକାଲ୍‌ ଦ୍ୱାରା \frac{15}{2} କୁ ଗୁଣନ କରି \frac{15}{2} କୁ -\frac{1}{2} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-8x+\left(-4\right)^{2}=-15+\left(-4\right)^{2}
-4 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -8 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -4 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-8x+16=-15+16
ବର୍ଗ -4.
x^{2}-8x+16=1
-15 କୁ 16 ସହ ଯୋଡନ୍ତୁ.
\left(x-4\right)^{2}=1
ଗୁଣନୀୟକ x^{2}-8x+16. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-4\right)^{2}}=\sqrt{1}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-4=1 x-4=-1
ସରଳୀକୃତ କରିବା.
x=5 x=3
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 4 ଯୋଡନ୍ତୁ.