m ପାଇଁ ସମାଧାନ କରନ୍ତୁ
m=\frac{3n-16}{7}
n ପାଇଁ ସମାଧାନ କରନ୍ତୁ
n=\frac{7m+16}{3}
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
3\left(3m-n\right)=2\left(m-8\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 2,3 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
9m-3n=2\left(m-8\right)
3 କୁ 3m-n ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
9m-3n=2m-16
2 କୁ m-8 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
9m-3n-2m=-16
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2m ବିୟୋଗ କରନ୍ତୁ.
7m-3n=-16
7m ପାଇବାକୁ 9m ଏବଂ -2m ସମ୍ମେଳନ କରନ୍ତୁ.
7m=-16+3n
ଉଭୟ ପାର୍ଶ୍ଵକୁ 3n ଯୋଡନ୍ତୁ.
7m=3n-16
ସମୀକରଣ ମାନାଙ୍କ ରୂପରେ ରହିଛି.
\frac{7m}{7}=\frac{3n-16}{7}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 7 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
m=\frac{3n-16}{7}
7 ଦ୍ୱାରା ବିଭାଜନ କରିବା 7 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
3\left(3m-n\right)=2\left(m-8\right)
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 6 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 2,3 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
9m-3n=2\left(m-8\right)
3 କୁ 3m-n ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
9m-3n=2m-16
2 କୁ m-8 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-3n=2m-16-9m
ଉଭୟ ପାର୍ଶ୍ୱରୁ 9m ବିୟୋଗ କରନ୍ତୁ.
-3n=-7m-16
-7m ପାଇବାକୁ 2m ଏବଂ -9m ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{-3n}{-3}=\frac{-7m-16}{-3}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
n=\frac{-7m-16}{-3}
-3 ଦ୍ୱାରା ବିଭାଜନ କରିବା -3 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
n=\frac{7m+16}{3}
-7m-16 କୁ -3 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}