x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=-2
x=\frac{1}{2}=0.5
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\left(x+1\right)\times 3+\left(x-1\right)\times 3=-4\left(x-1\right)\left(x+1\right)
ଭାରିଏବୁଲ୍ x ମୂଲ୍ୟଗୁଡିକ -1,1 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(x-1\right)\left(x+1\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x-1,x+1 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
3x+3+\left(x-1\right)\times 3=-4\left(x-1\right)\left(x+1\right)
x+1 କୁ 3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
3x+3+3x-3=-4\left(x-1\right)\left(x+1\right)
x-1 କୁ 3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
6x+3-3=-4\left(x-1\right)\left(x+1\right)
6x ପାଇବାକୁ 3x ଏବଂ 3x ସମ୍ମେଳନ କରନ୍ତୁ.
6x=-4\left(x-1\right)\left(x+1\right)
0 ପ୍ରାପ୍ତ କରିବାକୁ 3 ଏବଂ 3 ବିୟୋଗ କରନ୍ତୁ.
6x=\left(-4x+4\right)\left(x+1\right)
-4 କୁ x-1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
6x=-4x^{2}+4
-4x+4 କୁ x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
6x+4x^{2}=4
ଉଭୟ ପାର୍ଶ୍ଵକୁ 4x^{2} ଯୋଡନ୍ତୁ.
6x+4x^{2}-4=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 4 ବିୟୋଗ କରନ୍ତୁ.
4x^{2}+6x-4=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-6±\sqrt{6^{2}-4\times 4\left(-4\right)}}{2\times 4}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ 4, b ପାଇଁ 6, ଏବଂ c ପାଇଁ -4 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-6±\sqrt{36-4\times 4\left(-4\right)}}{2\times 4}
ବର୍ଗ 6.
x=\frac{-6±\sqrt{36-16\left(-4\right)}}{2\times 4}
-4 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-6±\sqrt{36+64}}{2\times 4}
-16 କୁ -4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-6±\sqrt{100}}{2\times 4}
36 କୁ 64 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-6±10}{2\times 4}
100 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-6±10}{8}
2 କୁ 4 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{4}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-6±10}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -6 କୁ 10 ସହ ଯୋଡନ୍ତୁ.
x=\frac{1}{2}
4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{4}{8} ହ୍ରାସ କରନ୍ତୁ.
x=-\frac{16}{8}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-6±10}{8} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -6 ରୁ 10 ବିୟୋଗ କରନ୍ତୁ.
x=-2
-16 କୁ 8 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{1}{2} x=-2
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
\left(x+1\right)\times 3+\left(x-1\right)\times 3=-4\left(x-1\right)\left(x+1\right)
ଭାରିଏବୁଲ୍ x ମୂଲ୍ୟଗୁଡିକ -1,1 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(x-1\right)\left(x+1\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x-1,x+1 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
3x+3+\left(x-1\right)\times 3=-4\left(x-1\right)\left(x+1\right)
x+1 କୁ 3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
3x+3+3x-3=-4\left(x-1\right)\left(x+1\right)
x-1 କୁ 3 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
6x+3-3=-4\left(x-1\right)\left(x+1\right)
6x ପାଇବାକୁ 3x ଏବଂ 3x ସମ୍ମେଳନ କରନ୍ତୁ.
6x=-4\left(x-1\right)\left(x+1\right)
0 ପ୍ରାପ୍ତ କରିବାକୁ 3 ଏବଂ 3 ବିୟୋଗ କରନ୍ତୁ.
6x=\left(-4x+4\right)\left(x+1\right)
-4 କୁ x-1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
6x=-4x^{2}+4
-4x+4 କୁ x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
6x+4x^{2}=4
ଉଭୟ ପାର୍ଶ୍ଵକୁ 4x^{2} ଯୋଡନ୍ତୁ.
4x^{2}+6x=4
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{4x^{2}+6x}{4}=\frac{4}{4}
ଉଭୟ ପାର୍ଶ୍ୱକୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{6}{4}x=\frac{4}{4}
4 ଦ୍ୱାରା ବିଭାଜନ କରିବା 4 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}+\frac{3}{2}x=\frac{4}{4}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{6}{4} ହ୍ରାସ କରନ୍ତୁ.
x^{2}+\frac{3}{2}x=1
4 କୁ 4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=1+\left(\frac{3}{4}\right)^{2}
\frac{3}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, \frac{3}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{3}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{3}{2}x+\frac{9}{16}=1+\frac{9}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{3}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{25}{16}
1 କୁ \frac{9}{16} ସହ ଯୋଡନ୍ତୁ.
\left(x+\frac{3}{4}\right)^{2}=\frac{25}{16}
ଗୁଣନୀୟକ x^{2}+\frac{3}{2}x+\frac{9}{16}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{3}{4}=\frac{5}{4} x+\frac{3}{4}=-\frac{5}{4}
ସରଳୀକୃତ କରିବା.
x=\frac{1}{2} x=-2
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{3}{4} ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}