ମୂଲ୍ୟାୟନ କରିବା
\frac{11-5x}{\left(x-3\right)\left(2x-5\right)}
w.r.t. x ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
\frac{2\left(\left(5x-11\right)^{2}-6\right)}{5\left(\left(x-3\right)\left(2x-5\right)\right)^{2}}
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{3\left(x-3\right)}{\left(x-3\right)\left(2x-5\right)}-\frac{4\left(2x-5\right)}{\left(x-3\right)\left(2x-5\right)}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 2x-5 ଏବଂ x-3 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି \left(x-3\right)\left(2x-5\right). \frac{3}{2x-5} କୁ \frac{x-3}{x-3} ଥର ଗୁଣନ କରନ୍ତୁ. \frac{4}{x-3} କୁ \frac{2x-5}{2x-5} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{3\left(x-3\right)-4\left(2x-5\right)}{\left(x-3\right)\left(2x-5\right)}
ଯେହେତୁ \frac{3\left(x-3\right)}{\left(x-3\right)\left(2x-5\right)} ଏବଂ \frac{4\left(2x-5\right)}{\left(x-3\right)\left(2x-5\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{3x-9-8x+20}{\left(x-3\right)\left(2x-5\right)}
3\left(x-3\right)-4\left(2x-5\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{-5x+11}{\left(x-3\right)\left(2x-5\right)}
3x-9-8x+20ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{-5x+11}{2x^{2}-11x+15}
ବିସ୍ତାର କରନ୍ତୁ \left(x-3\right)\left(2x-5\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x-3\right)}{\left(x-3\right)\left(2x-5\right)}-\frac{4\left(2x-5\right)}{\left(x-3\right)\left(2x-5\right)})
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 2x-5 ଏବଂ x-3 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି \left(x-3\right)\left(2x-5\right). \frac{3}{2x-5} କୁ \frac{x-3}{x-3} ଥର ଗୁଣନ କରନ୍ତୁ. \frac{4}{x-3} କୁ \frac{2x-5}{2x-5} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3\left(x-3\right)-4\left(2x-5\right)}{\left(x-3\right)\left(2x-5\right)})
ଯେହେତୁ \frac{3\left(x-3\right)}{\left(x-3\right)\left(2x-5\right)} ଏବଂ \frac{4\left(2x-5\right)}{\left(x-3\right)\left(2x-5\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{3x-9-8x+20}{\left(x-3\right)\left(2x-5\right)})
3\left(x-3\right)-4\left(2x-5\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x+11}{\left(x-3\right)\left(2x-5\right)})
3x-9-8x+20ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x+11}{2x^{2}-5x-6x+15})
x-3 ର ପ୍ରତିଟି ପଦକୁ 2x-5 ର ପ୍ରତିଟି ପଦ ଦ୍ୱାରା ଗୁଣନ କରି ବିତରଣ ସଂକ୍ରାଣ ଗୁଣଧର୍ମ ପ୍ରୟୋଗ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x+11}{2x^{2}-11x+15})
-11x ପାଇବାକୁ -5x ଏବଂ -6x ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\left(2x^{2}-11x^{1}+15\right)\frac{\mathrm{d}}{\mathrm{d}x}(-5x^{1}+11)-\left(-5x^{1}+11\right)\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}-11x^{1}+15)}{\left(2x^{2}-11x^{1}+15\right)^{2}}
ଯେକୌଣସି ଦୁଇଟି ପୃଥକ୍ଯୋଗ୍ୟ ଫଙ୍କସନ୍ ପାଇଁ, ଦୁଇଟି ଫଙ୍କସନ୍ର କୋସେଣ୍ଟର ଡେରିଭେଟିଭ୍ ହେଉଛି ଲବର ଡେରିଭେଟିଭ୍ର ହର ଗୁଣା ବିଯୁକ୍ତ ହରର ଡେରିଭେଟିଭ୍ର ଲବ ଗୁଣା, ସମସ୍ତ ବର୍ଗଯୁକ୍ତ ହର ଦ୍ୱାରା ବିଭାଜିତ.
\frac{\left(2x^{2}-11x^{1}+15\right)\left(-5\right)x^{1-1}-\left(-5x^{1}+11\right)\left(2\times 2x^{2-1}-11x^{1-1}\right)}{\left(2x^{2}-11x^{1}+15\right)^{2}}
ଏକ ପଲିନୋମିଆଲ୍ର ଡେରିଭେଟିଭ୍ ହେଉଛି ଏହାର ପଦଗୁଡିକର ଡେରିଭେଟିଭ୍ଗୁଡିକର ଯୋଗଫଳ. କୌଣସି ସ୍ଥିରାଙ୍କ ସଂଖ୍ୟାର ଡେରିଭେଟିଭ୍ ହେଉଛି 0. ax^{n} ର ଡେରିଭେଟିଭ୍ ହେଉଛି nax^{n-1}.
\frac{\left(2x^{2}-11x^{1}+15\right)\left(-5\right)x^{0}-\left(-5x^{1}+11\right)\left(4x^{1}-11x^{0}\right)}{\left(2x^{2}-11x^{1}+15\right)^{2}}
ସରଳୀକୃତ କରିବା.
\frac{2x^{2}\left(-5\right)x^{0}-11x^{1}\left(-5\right)x^{0}+15\left(-5\right)x^{0}-\left(-5x^{1}+11\right)\left(4x^{1}-11x^{0}\right)}{\left(2x^{2}-11x^{1}+15\right)^{2}}
2x^{2}-11x^{1}+15 କୁ -5x^{0} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{2x^{2}\left(-5\right)x^{0}-11x^{1}\left(-5\right)x^{0}+15\left(-5\right)x^{0}-\left(-5x^{1}\times 4x^{1}-5x^{1}\left(-11\right)x^{0}+11\times 4x^{1}+11\left(-11\right)x^{0}\right)}{\left(2x^{2}-11x^{1}+15\right)^{2}}
-5x^{1}+11 କୁ 4x^{1}-11x^{0} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{2\left(-5\right)x^{2}-11\left(-5\right)x^{1}+15\left(-5\right)x^{0}-\left(-5\times 4x^{1+1}-5\left(-11\right)x^{1}+11\times 4x^{1}+11\left(-11\right)x^{0}\right)}{\left(2x^{2}-11x^{1}+15\right)^{2}}
ସମାନ ଆଧାର ବା ବେସ୍ର ପାୱାର୍ଡକୁ ଗୁଣନ କରିବାକୁ, ସେଗୁଡିକର ଘାତାଙ୍କଗୁଡିକ ଯୋଡନ୍ତୁ.
\frac{-10x^{2}+55x^{1}-75x^{0}-\left(-20x^{2}+55x^{1}+44x^{1}-121x^{0}\right)}{\left(2x^{2}-11x^{1}+15\right)^{2}}
ସରଳୀକୃତ କରିବା.
\frac{10x^{2}-44x^{1}+46x^{0}}{\left(2x^{2}-11x^{1}+15\right)^{2}}
ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{10x^{2}-44x+46x^{0}}{\left(2x^{2}-11x+15\right)^{2}}
ଯେ କୌଣସି ପଦ t, t^{1}=t ପାଇଁ.
\frac{10x^{2}-44x+46\times 1}{\left(2x^{2}-11x+15\right)^{2}}
0, t^{0}=1 ବ୍ୟତୀତ ଯେ କୌଣସି ପଦ t ପାଇଁ.
\frac{10x^{2}-44x+46}{\left(2x^{2}-11x+15\right)^{2}}
ଯେ କୌଣସି ପଦ t, t\times 1=t ଏବଂ 1t=t ପାଇଁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}