ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
n ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

3\times 3=n\left(n-4\right)+n\times 2
ଭାରିଏବୁଲ୍‌ n 0 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 3n^{3} ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, n^{3},3n^{2} ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
9=n\left(n-4\right)+n\times 2
9 ପ୍ରାପ୍ତ କରିବାକୁ 3 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
9=n^{2}-4n+n\times 2
n କୁ n-4 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
9=n^{2}-2n
-2n ପାଇବାକୁ -4n ଏବଂ n\times 2 ସମ୍ମେଳନ କରନ୍ତୁ.
n^{2}-2n=9
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
n^{2}-2n-9=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 9 ବିୟୋଗ କରନ୍ତୁ.
n=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-9\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ -2, ଏବଂ c ପାଇଁ -9 ପ୍ରତିବଦଳ କରନ୍ତୁ.
n=\frac{-\left(-2\right)±\sqrt{4-4\left(-9\right)}}{2}
ବର୍ଗ -2.
n=\frac{-\left(-2\right)±\sqrt{4+36}}{2}
-4 କୁ -9 ଥର ଗୁଣନ କରନ୍ତୁ.
n=\frac{-\left(-2\right)±\sqrt{40}}{2}
4 କୁ 36 ସହ ଯୋଡନ୍ତୁ.
n=\frac{-\left(-2\right)±2\sqrt{10}}{2}
40 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
n=\frac{2±2\sqrt{10}}{2}
-2 ର ବିପରୀତ ହେଉଛି 2.
n=\frac{2\sqrt{10}+2}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ n=\frac{2±2\sqrt{10}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 2 କୁ 2\sqrt{10} ସହ ଯୋଡନ୍ତୁ.
n=\sqrt{10}+1
2+2\sqrt{10} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
n=\frac{2-2\sqrt{10}}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ n=\frac{2±2\sqrt{10}}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 2 ରୁ 2\sqrt{10} ବିୟୋଗ କରନ୍ତୁ.
n=1-\sqrt{10}
2-2\sqrt{10} କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
n=\sqrt{10}+1 n=1-\sqrt{10}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
3\times 3=n\left(n-4\right)+n\times 2
ଭାରିଏବୁଲ୍‌ n 0 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 3n^{3} ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, n^{3},3n^{2} ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
9=n\left(n-4\right)+n\times 2
9 ପ୍ରାପ୍ତ କରିବାକୁ 3 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
9=n^{2}-4n+n\times 2
n କୁ n-4 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
9=n^{2}-2n
-2n ପାଇବାକୁ -4n ଏବଂ n\times 2 ସମ୍ମେଳନ କରନ୍ତୁ.
n^{2}-2n=9
ପାର୍ଶ୍ୱଗୁଡିକ ସ୍ୱାପ୍‌ କରନ୍ତୁ ଯାହା ଫଳରେ ସମସ୍ତ ଭାରିଏବୁଲ୍ ପଦଗୁଡିକ ବାମ ହାତ ପାର୍ଶ୍ୱରେ ରହିଥାନ୍ତି.
n^{2}-2n+1=9+1
-1 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, -2 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -1 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
n^{2}-2n+1=10
9 କୁ 1 ସହ ଯୋଡନ୍ତୁ.
\left(n-1\right)^{2}=10
ଗୁଣନୀୟକ n^{2}-2n+1. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(n-1\right)^{2}}=\sqrt{10}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
n-1=\sqrt{10} n-1=-\sqrt{10}
ସରଳୀକୃତ କରିବା.
n=\sqrt{10}+1 n=1-\sqrt{10}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 1 ଯୋଡନ୍ତୁ.