ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}-\frac{2-\sqrt{3}}{2+\sqrt{3}}
ଲବ ଓ ହରକୁ 2+\sqrt{3} ଦ୍ୱାରା ଗୁଣନ କରି \frac{2+\sqrt{3}}{2-\sqrt{3}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}-\frac{2-\sqrt{3}}{2+\sqrt{3}}
\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)କୁ ବିବେଚନା କରନ୍ତୁ. ନିୟମ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} ବ୍ୟବହାର କରି ଗୁଣନକୁ ବର୍ଗଗୁଡିକ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟରେ ରୂପାନ୍ତରିତ କରାଯାଇପାରିବ.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{4-3}-\frac{2-\sqrt{3}}{2+\sqrt{3}}
ବର୍ଗ 2. ବର୍ଗ \sqrt{3}.
\frac{\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)}{1}-\frac{2-\sqrt{3}}{2+\sqrt{3}}
1 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 3 ବିୟୋଗ କରନ୍ତୁ.
\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)-\frac{2-\sqrt{3}}{2+\sqrt{3}}
ଏକ ଦ୍ୱାରା ବିଭାଜିତ ହେଉଥିବା ଯେକୌଣସି ସଂଖ୍ୟାରୁ ସେହି ସଂଖ୍ୟା ମିଳିଥାଏ.
\left(2+\sqrt{3}\right)^{2}-\frac{2-\sqrt{3}}{2+\sqrt{3}}
\left(2+\sqrt{3}\right)^{2} ପ୍ରାପ୍ତ କରିବାକୁ 2+\sqrt{3} ଏବଂ 2+\sqrt{3} ଗୁଣନ କରନ୍ତୁ.
\left(2+\sqrt{3}\right)^{2}-\frac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}
ଲବ ଓ ହରକୁ 2-\sqrt{3} ଦ୍ୱାରା ଗୁଣନ କରି \frac{2-\sqrt{3}}{2+\sqrt{3}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
\left(2+\sqrt{3}\right)^{2}-\frac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)}{2^{2}-\left(\sqrt{3}\right)^{2}}
\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)କୁ ବିବେଚନା କରନ୍ତୁ. ନିୟମ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} ବ୍ୟବହାର କରି ଗୁଣନକୁ ବର୍ଗଗୁଡିକ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟରେ ରୂପାନ୍ତରିତ କରାଯାଇପାରିବ.
\left(2+\sqrt{3}\right)^{2}-\frac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)}{4-3}
ବର୍ଗ 2. ବର୍ଗ \sqrt{3}.
\left(2+\sqrt{3}\right)^{2}-\frac{\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)}{1}
1 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 3 ବିୟୋଗ କରନ୍ତୁ.
\left(2+\sqrt{3}\right)^{2}-\left(2-\sqrt{3}\right)\left(2-\sqrt{3}\right)
ଏକ ଦ୍ୱାରା ବିଭାଜିତ ହେଉଥିବା ଯେକୌଣସି ସଂଖ୍ୟାରୁ ସେହି ସଂଖ୍ୟା ମିଳିଥାଏ.
\left(2+\sqrt{3}\right)^{2}-\left(2-\sqrt{3}\right)^{2}
\left(2-\sqrt{3}\right)^{2} ପ୍ରାପ୍ତ କରିବାକୁ 2-\sqrt{3} ଏବଂ 2-\sqrt{3} ଗୁଣନ କରନ୍ତୁ.
4+4\sqrt{3}+\left(\sqrt{3}\right)^{2}-\left(2-\sqrt{3}\right)^{2}
\left(2+\sqrt{3}\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
4+4\sqrt{3}+3-\left(2-\sqrt{3}\right)^{2}
\sqrt{3} ର ଚତୁର୍ଭୁଜ ହେଉଛି 3.
7+4\sqrt{3}-\left(2-\sqrt{3}\right)^{2}
7 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 3 ଯୋଗ କରନ୍ତୁ.
7+4\sqrt{3}-\left(4-4\sqrt{3}+\left(\sqrt{3}\right)^{2}\right)
\left(2-\sqrt{3}\right)^{2} କୁ ବିସ୍ତାର କରିବାକୁ ବାଇନୋମିଆଲ ଥିଓରମ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ବ୍ୟବହାର କରନ୍ତୁ.
7+4\sqrt{3}-\left(4-4\sqrt{3}+3\right)
\sqrt{3} ର ଚତୁର୍ଭୁଜ ହେଉଛି 3.
7+4\sqrt{3}-\left(7-4\sqrt{3}\right)
7 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 3 ଯୋଗ କରନ୍ତୁ.
7+4\sqrt{3}-7-\left(-4\sqrt{3}\right)
7-4\sqrt{3} ର ବିପରୀତ ଖୋଜି ପାଇବା ପାଇଁ, ପ୍ରତ୍ୟେକ ପଦର ବିପରୀତ ଖୋଜି ପାଆନ୍ତୁ.
7+4\sqrt{3}-7+4\sqrt{3}
-4\sqrt{3} ର ବିପରୀତ ହେଉଛି 4\sqrt{3}.
4\sqrt{3}+4\sqrt{3}
0 ପ୍ରାପ୍ତ କରିବାକୁ 7 ଏବଂ 7 ବିୟୋଗ କରନ୍ତୁ.
8\sqrt{3}
8\sqrt{3} ପାଇବାକୁ 4\sqrt{3} ଏବଂ 4\sqrt{3} ସମ୍ମେଳନ କରନ୍ତୁ.