ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
ମୂଲ୍ୟାୟନ କରିବା
Tick mark Image
w.r.t. x ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}-\frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x+2 ଏବଂ x-3 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି \left(x-3\right)\left(x+2\right). \frac{2}{x+2} କୁ \frac{x-3}{x-3} ଥର ଗୁଣନ କରନ୍ତୁ. \frac{7}{x-3} କୁ \frac{x+2}{x+2} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{2\left(x-3\right)-7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}
ଯେହେତୁ \frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)} ଏବଂ \frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{2x-6-7x-14}{\left(x-3\right)\left(x+2\right)}
2\left(x-3\right)-7\left(x+2\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{-5x-20}{\left(x-3\right)\left(x+2\right)}
2x-6-7x-14ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{-5x-20}{x^{2}-x-6}
ବିସ୍ତାର କରନ୍ତୁ \left(x-3\right)\left(x+2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)}-\frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)})
ଏକ୍ସପ୍ରେସନ୍‌‌ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x+2 ଏବଂ x-3 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି \left(x-3\right)\left(x+2\right). \frac{2}{x+2} କୁ \frac{x-3}{x-3} ଥର ଗୁଣନ କରନ୍ତୁ. \frac{7}{x-3} କୁ \frac{x+2}{x+2} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x-3\right)-7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)})
ଯେହେତୁ \frac{2\left(x-3\right)}{\left(x-3\right)\left(x+2\right)} ଏବଂ \frac{7\left(x+2\right)}{\left(x-3\right)\left(x+2\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x-6-7x-14}{\left(x-3\right)\left(x+2\right)})
2\left(x-3\right)-7\left(x+2\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{\left(x-3\right)\left(x+2\right)})
2x-6-7x-14ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{x^{2}+2x-3x-6})
x-3 ର ପ୍ରତିଟି ପଦକୁ x+2 ର ପ୍ରତିଟି ପଦ ଦ୍ୱାରା ଗୁଣନ କରି ବିତରଣ ସଂକ୍ରାଣ ଗୁଣଧର୍ମ ପ୍ରୟୋଗ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-5x-20}{x^{2}-x-6})
-x ପାଇବାକୁ 2x ଏବଂ -3x ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\left(x^{2}-x^{1}-6\right)\frac{\mathrm{d}}{\mathrm{d}x}(-5x^{1}-20)-\left(-5x^{1}-20\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-6)}{\left(x^{2}-x^{1}-6\right)^{2}}
ଯେକୌଣସି ଦୁଇଟି ପୃଥକ୍‌ଯୋଗ୍ୟ ଫଙ୍କସନ୍‌ ପାଇଁ, ଦୁଇଟି ଫଙ୍କସନ୍‌ର କୋସେଣ୍ଟର ଡେରିଭେଟିଭ୍‌ ହେଉଛି ଲବର ଡେରିଭେଟିଭ୍‌ର ହର ଗୁଣା ବିଯୁକ୍ତ ହରର ଡେରିଭେଟିଭ୍‌ର ଲବ ଗୁଣା, ସମସ୍ତ ବର୍ଗଯୁକ୍ତ ହର ଦ୍ୱାରା ବିଭାଜିତ.
\frac{\left(x^{2}-x^{1}-6\right)\left(-5\right)x^{1-1}-\left(-5x^{1}-20\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
ଏକ ପଲିନୋମିଆଲ୍‌ର ଡେରିଭେଟିଭ୍‌ ହେଉଛି ଏହାର ପଦଗୁଡିକର ଡେରିଭେଟିଭ୍‌ଗୁଡିକର ଯୋଗଫଳ. କୌଣସି ସ୍ଥିରାଙ୍କ ସଂଖ୍ୟାର ଡେରିଭେଟିଭ୍‌ ହେଉଛି 0. ax^{n} ର ଡେରିଭେଟିଭ୍‌ ହେଉଛି nax^{n-1}.
\frac{\left(x^{2}-x^{1}-6\right)\left(-5\right)x^{0}-\left(-5x^{1}-20\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
ସରଳୀକୃତ କରିବା.
\frac{x^{2}\left(-5\right)x^{0}-x^{1}\left(-5\right)x^{0}-6\left(-5\right)x^{0}-\left(-5x^{1}-20\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
x^{2}-x^{1}-6 କୁ -5x^{0} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{x^{2}\left(-5\right)x^{0}-x^{1}\left(-5\right)x^{0}-6\left(-5\right)x^{0}-\left(-5x^{1}\times 2x^{1}-5x^{1}\left(-1\right)x^{0}-20\times 2x^{1}-20\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
-5x^{1}-20 କୁ 2x^{1}-x^{0} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{-5x^{2}-\left(-5x^{1}\right)-6\left(-5\right)x^{0}-\left(-5\times 2x^{1+1}-5\left(-1\right)x^{1}-20\times 2x^{1}-20\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
ସମାନ ଆଧାର ବା ବେସ୍‌ର ପାୱାର୍ଡକୁ ଗୁଣନ କରିବାକୁ, ସେଗୁଡିକର ଘାତାଙ୍କଗୁଡିକ ଯୋଡନ୍ତୁ.
\frac{-5x^{2}+5x^{1}+30x^{0}-\left(-10x^{2}+5x^{1}-40x^{1}+20x^{0}\right)}{\left(x^{2}-x^{1}-6\right)^{2}}
ସରଳୀକୃତ କରିବା.
\frac{5x^{2}+40x^{1}+10x^{0}}{\left(x^{2}-x^{1}-6\right)^{2}}
ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{5x^{2}+40x+10x^{0}}{\left(x^{2}-x-6\right)^{2}}
ଯେ କୌଣସି ପଦ t, t^{1}=t ପାଇଁ.
\frac{5x^{2}+40x+10\times 1}{\left(x^{2}-x-6\right)^{2}}
0, t^{0}=1 ବ୍ୟତୀତ ଯେ କୌଣସି ପଦ t ପାଇଁ.
\frac{5x^{2}+40x+10}{\left(x^{2}-x-6\right)^{2}}
ଯେ କୌଣସି ପଦ t, t\times 1=t ଏବଂ 1t=t ପାଇଁ.