ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

2-2x\left(x+1\right)=5\left(x+1\right)
ଭାରିଏବୁଲ୍‌ x -1 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ x+1 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
2-2x^{2}-2x=5\left(x+1\right)
-2x କୁ x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2-2x^{2}-2x=5x+5
5 କୁ x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2-2x^{2}-2x-5x=5
ଉଭୟ ପାର୍ଶ୍ୱରୁ 5x ବିୟୋଗ କରନ୍ତୁ.
2-2x^{2}-7x=5
-7x ପାଇବାକୁ -2x ଏବଂ -5x ସମ୍ମେଳନ କରନ୍ତୁ.
2-2x^{2}-7x-5=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 5 ବିୟୋଗ କରନ୍ତୁ.
-3-2x^{2}-7x=0
-3 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 5 ବିୟୋଗ କରନ୍ତୁ.
-2x^{2}-7x-3=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -2, b ପାଇଁ -7, ଏବଂ c ପାଇଁ -3 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-2\right)\left(-3\right)}}{2\left(-2\right)}
ବର୍ଗ -7.
x=\frac{-\left(-7\right)±\sqrt{49+8\left(-3\right)}}{2\left(-2\right)}
-4 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-7\right)±\sqrt{49-24}}{2\left(-2\right)}
8 କୁ -3 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-\left(-7\right)±\sqrt{25}}{2\left(-2\right)}
49 କୁ -24 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-\left(-7\right)±5}{2\left(-2\right)}
25 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{7±5}{2\left(-2\right)}
-7 ର ବିପରୀତ ହେଉଛି 7.
x=\frac{7±5}{-4}
2 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{12}{-4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{7±5}{-4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. 7 କୁ 5 ସହ ଯୋଡନ୍ତୁ.
x=-3
12 କୁ -4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{2}{-4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{7±5}{-4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. 7 ରୁ 5 ବିୟୋଗ କରନ୍ତୁ.
x=-\frac{1}{2}
2 ବାହାର କରିବା ଏବଂ ବାତିଲ୍‌ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{2}{-4} ହ୍ରାସ କରନ୍ତୁ.
x=-3 x=-\frac{1}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
2-2x\left(x+1\right)=5\left(x+1\right)
ଭାରିଏବୁଲ୍‌ x -1 ସହ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱକୁ x+1 ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ.
2-2x^{2}-2x=5\left(x+1\right)
-2x କୁ x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2-2x^{2}-2x=5x+5
5 କୁ x+1 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
2-2x^{2}-2x-5x=5
ଉଭୟ ପାର୍ଶ୍ୱରୁ 5x ବିୟୋଗ କରନ୍ତୁ.
2-2x^{2}-7x=5
-7x ପାଇବାକୁ -2x ଏବଂ -5x ସମ୍ମେଳନ କରନ୍ତୁ.
-2x^{2}-7x=5-2
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2 ବିୟୋଗ କରନ୍ତୁ.
-2x^{2}-7x=3
3 ପ୍ରାପ୍ତ କରିବାକୁ 5 ଏବଂ 2 ବିୟୋଗ କରନ୍ତୁ.
\frac{-2x^{2}-7x}{-2}=\frac{3}{-2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{7}{-2}\right)x=\frac{3}{-2}
-2 ଦ୍ୱାରା ବିଭାଜନ କରିବା -2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+\frac{7}{2}x=\frac{3}{-2}
-7 କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{7}{2}x=-\frac{3}{2}
3 କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{7}{2}x+\left(\frac{7}{4}\right)^{2}=-\frac{3}{2}+\left(\frac{7}{4}\right)^{2}
\frac{7}{4} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{7}{2} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{7}{4} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{7}{2}x+\frac{49}{16}=-\frac{3}{2}+\frac{49}{16}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{7}{4} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+\frac{7}{2}x+\frac{49}{16}=\frac{25}{16}
ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{49}{16} ସହିତ -\frac{3}{2} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
\left(x+\frac{7}{4}\right)^{2}=\frac{25}{16}
ଗୁଣନୀୟକ x^{2}+\frac{7}{2}x+\frac{49}{16}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{7}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{7}{4}=\frac{5}{4} x+\frac{7}{4}=-\frac{5}{4}
ସରଳୀକୃତ କରିବା.
x=-\frac{1}{2} x=-3
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{7}{4} ବିୟୋଗ କରନ୍ତୁ.