x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
x=\sqrt{57}+7\approx 14.549834435
x=7-\sqrt{57}\approx -0.549834435
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
6x\times 2+\left(2x+4\right)\times 2=x\left(x+2\right)
ଭାରିଏବୁଲ୍ x ମୂଲ୍ୟଗୁଡିକ -2,0 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 30x\left(x+2\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 5\left(x+2\right),15x,30 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
12x+\left(2x+4\right)\times 2=x\left(x+2\right)
12 ପ୍ରାପ୍ତ କରିବାକୁ 6 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
12x+4x+8=x\left(x+2\right)
2x+4 କୁ 2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
16x+8=x\left(x+2\right)
16x ପାଇବାକୁ 12x ଏବଂ 4x ସମ୍ମେଳନ କରନ୍ତୁ.
16x+8=x^{2}+2x
x କୁ x+2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
16x+8-x^{2}=2x
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ.
16x+8-x^{2}-2x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x ବିୟୋଗ କରନ୍ତୁ.
14x+8-x^{2}=0
14x ପାଇବାକୁ 16x ଏବଂ -2x ସମ୍ମେଳନ କରନ୍ତୁ.
-x^{2}+14x+8=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-14±\sqrt{14^{2}-4\left(-1\right)\times 8}}{2\left(-1\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍ ସୂତ୍ରରେ, a ପାଇଁ -1, b ପାଇଁ 14, ଏବଂ c ପାଇଁ 8 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-14±\sqrt{196-4\left(-1\right)\times 8}}{2\left(-1\right)}
ବର୍ଗ 14.
x=\frac{-14±\sqrt{196+4\times 8}}{2\left(-1\right)}
-4 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-14±\sqrt{196+32}}{2\left(-1\right)}
4 କୁ 8 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-14±\sqrt{228}}{2\left(-1\right)}
196 କୁ 32 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-14±2\sqrt{57}}{2\left(-1\right)}
228 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{-14±2\sqrt{57}}{-2}
2 କୁ -1 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{2\sqrt{57}-14}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-14±2\sqrt{57}}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -14 କୁ 2\sqrt{57} ସହ ଯୋଡନ୍ତୁ.
x=7-\sqrt{57}
-14+2\sqrt{57} କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{-2\sqrt{57}-14}{-2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-14±2\sqrt{57}}{-2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -14 ରୁ 2\sqrt{57} ବିୟୋଗ କରନ୍ତୁ.
x=\sqrt{57}+7
-14-2\sqrt{57} କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=7-\sqrt{57} x=\sqrt{57}+7
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
6x\times 2+\left(2x+4\right)\times 2=x\left(x+2\right)
ଭାରିଏବୁଲ୍ x ମୂଲ୍ୟଗୁଡିକ -2,0 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ 30x\left(x+2\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, 5\left(x+2\right),15x,30 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
12x+\left(2x+4\right)\times 2=x\left(x+2\right)
12 ପ୍ରାପ୍ତ କରିବାକୁ 6 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
12x+4x+8=x\left(x+2\right)
2x+4 କୁ 2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
16x+8=x\left(x+2\right)
16x ପାଇବାକୁ 12x ଏବଂ 4x ସମ୍ମେଳନ କରନ୍ତୁ.
16x+8=x^{2}+2x
x କୁ x+2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
16x+8-x^{2}=2x
ଉଭୟ ପାର୍ଶ୍ୱରୁ x^{2} ବିୟୋଗ କରନ୍ତୁ.
16x+8-x^{2}-2x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 2x ବିୟୋଗ କରନ୍ତୁ.
14x+8-x^{2}=0
14x ପାଇବାକୁ 16x ଏବଂ -2x ସମ୍ମେଳନ କରନ୍ତୁ.
14x-x^{2}=-8
ଉଭୟ ପାର୍ଶ୍ୱରୁ 8 ବିୟୋଗ କରନ୍ତୁ. ଶୂନ୍ୟରୁ ଯେକୌଣସି ସଂଖ୍ୟା ବିୟୋଗ କଲେ ସେହି ସଂଖ୍ୟାର ବିଯୁକ୍ତାତ୍ମକ ରୂପ ମିଳିଥାଏ.
-x^{2}+14x=-8
କ୍ୱାଡ୍ରାଟିକ୍ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-x^{2}+14x}{-1}=-\frac{8}{-1}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{14}{-1}x=-\frac{8}{-1}
-1 ଦ୍ୱାରା ବିଭାଜନ କରିବା -1 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍ କରିଥାଏ.
x^{2}-14x=-\frac{8}{-1}
14 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-14x=8
-8 କୁ -1 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}-14x+\left(-7\right)^{2}=8+\left(-7\right)^{2}
-7 ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍ର ଗୁଣାଙ୍କ, -14 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ -7 ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}-14x+49=8+49
ବର୍ଗ -7.
x^{2}-14x+49=57
8 କୁ 49 ସହ ଯୋଡନ୍ତୁ.
\left(x-7\right)^{2}=57
ଗୁଣନୀୟକ x^{2}-14x+49. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x-7\right)^{2}}=\sqrt{57}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x-7=\sqrt{57} x-7=-\sqrt{57}
ସରଳୀକୃତ କରିବା.
x=\sqrt{57}+7 x=7-\sqrt{57}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରେ 7 ଯୋଡନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}