ମୂଲ୍ୟାୟନ କରିବା
\frac{\sqrt{15}}{5}-\frac{\sqrt{5}}{10}\approx 0.550989871
ଗୁଣକ
\frac{\sqrt{5} {(2 \sqrt{3} - 1)}}{10} = 0.5509898714915045
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{2\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\times \frac{1\sqrt{3}}{2}-\frac{1}{\sqrt{5}}\times \frac{1}{2}
ଲବ ଓ ହରକୁ \sqrt{5} ଦ୍ୱାରା ଗୁଣନ କରି \frac{2}{\sqrt{5}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
\frac{2\sqrt{5}}{5}\times \frac{1\sqrt{3}}{2}-\frac{1}{\sqrt{5}}\times \frac{1}{2}
\sqrt{5} ର ଚତୁର୍ଭୁଜ ହେଉଛି 5.
\frac{2\sqrt{5}\times 1\sqrt{3}}{5\times 2}-\frac{1}{\sqrt{5}}\times \frac{1}{2}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{2\sqrt{5}}{5} କୁ \frac{1\sqrt{3}}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\sqrt{3}\sqrt{5}}{5}-\frac{1}{\sqrt{5}}\times \frac{1}{2}
ଉଭୟ ଲବ ଓ ହରରେ 2 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{\sqrt{3}\sqrt{5}}{5}-\frac{\sqrt{5}}{\left(\sqrt{5}\right)^{2}}\times \frac{1}{2}
ଲବ ଓ ହରକୁ \sqrt{5} ଦ୍ୱାରା ଗୁଣନ କରି \frac{1}{\sqrt{5}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
\frac{\sqrt{3}\sqrt{5}}{5}-\frac{\sqrt{5}}{5}\times \frac{1}{2}
\sqrt{5} ର ଚତୁର୍ଭୁଜ ହେଉଛି 5.
\frac{\sqrt{3}\sqrt{5}}{5}-\frac{\sqrt{5}}{5\times 2}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{\sqrt{5}}{5} କୁ \frac{1}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\sqrt{3}\sqrt{5}}{5}-\frac{\sqrt{5}}{10}
10 ପ୍ରାପ୍ତ କରିବାକୁ 5 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
\frac{2\sqrt{3}\sqrt{5}}{10}-\frac{\sqrt{5}}{10}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 5 ଏବଂ 10 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି 10. \frac{\sqrt{3}\sqrt{5}}{5} କୁ \frac{2}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{2\sqrt{3}\sqrt{5}-\sqrt{5}}{10}
ଯେହେତୁ \frac{2\sqrt{3}\sqrt{5}}{10} ଏବଂ \frac{\sqrt{5}}{10} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{2\sqrt{15}-\sqrt{5}}{10}
2\sqrt{3}\sqrt{5}-\sqrt{5} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}