ମୂଲ୍ୟାୟନ କରିବା
\frac{825\sqrt{3}-1485}{2}\approx -28.029041878
ଗୁଣକ
\frac{165 {(5 \sqrt{3} - 9)}}{2} = -28.029041877838196
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{12\left(-55\right)}{12+\frac{2\times 10}{\sqrt{3}}}
-55 ପ୍ରାପ୍ତ କରିବାକୁ 120 ଏବଂ 175 ବିୟୋଗ କରନ୍ତୁ.
\frac{-660}{12+\frac{2\times 10}{\sqrt{3}}}
-660 ପ୍ରାପ୍ତ କରିବାକୁ 12 ଏବଂ -55 ଗୁଣନ କରନ୍ତୁ.
\frac{-660}{12+\frac{20}{\sqrt{3}}}
20 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 10 ଗୁଣନ କରନ୍ତୁ.
\frac{-660}{12+\frac{20\sqrt{3}}{\left(\sqrt{3}\right)^{2}}}
ଲବ ଓ ହରକୁ \sqrt{3} ଦ୍ୱାରା ଗୁଣନ କରି \frac{20}{\sqrt{3}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
\frac{-660}{12+\frac{20\sqrt{3}}{3}}
\sqrt{3} ର ଚତୁର୍ଭୁଜ ହେଉଛି 3.
\frac{-660}{\frac{12\times 3}{3}+\frac{20\sqrt{3}}{3}}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 12 କୁ \frac{3}{3} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{-660}{\frac{12\times 3+20\sqrt{3}}{3}}
ଯେହେତୁ \frac{12\times 3}{3} ଏବଂ \frac{20\sqrt{3}}{3} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{-660}{\frac{36+20\sqrt{3}}{3}}
12\times 3+20\sqrt{3} ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{-660\times 3}{36+20\sqrt{3}}
\frac{36+20\sqrt{3}}{3} ର ରେସିପ୍ରୋକାଲ୍ ଦ୍ୱାରା -660 କୁ ଗୁଣନ କରି -660 କୁ \frac{36+20\sqrt{3}}{3} ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
\frac{-660\times 3\left(36-20\sqrt{3}\right)}{\left(36+20\sqrt{3}\right)\left(36-20\sqrt{3}\right)}
ଲବ ଓ ହରକୁ 36-20\sqrt{3} ଦ୍ୱାରା ଗୁଣନ କରି \frac{-660\times 3}{36+20\sqrt{3}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
\frac{-660\times 3\left(36-20\sqrt{3}\right)}{36^{2}-\left(20\sqrt{3}\right)^{2}}
\left(36+20\sqrt{3}\right)\left(36-20\sqrt{3}\right)କୁ ବିବେଚନା କରନ୍ତୁ. ନିୟମ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} ବ୍ୟବହାର କରି ଗୁଣନକୁ ବର୍ଗଗୁଡିକ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟରେ ରୂପାନ୍ତରିତ କରାଯାଇପାରିବ.
\frac{-1980\left(36-20\sqrt{3}\right)}{36^{2}-\left(20\sqrt{3}\right)^{2}}
-1980 ପ୍ରାପ୍ତ କରିବାକୁ -660 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
\frac{-1980\left(36-20\sqrt{3}\right)}{1296-\left(20\sqrt{3}\right)^{2}}
2 ର 36 ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ 1296 ପ୍ରାପ୍ତ କରନ୍ତୁ.
\frac{-1980\left(36-20\sqrt{3}\right)}{1296-20^{2}\left(\sqrt{3}\right)^{2}}
ବିସ୍ତାର କରନ୍ତୁ \left(20\sqrt{3}\right)^{2}.
\frac{-1980\left(36-20\sqrt{3}\right)}{1296-400\left(\sqrt{3}\right)^{2}}
2 ର 20 ପାୱାର୍ ହିସାବ କରନ୍ତୁ ଏବଂ 400 ପ୍ରାପ୍ତ କରନ୍ତୁ.
\frac{-1980\left(36-20\sqrt{3}\right)}{1296-400\times 3}
\sqrt{3} ର ଚତୁର୍ଭୁଜ ହେଉଛି 3.
\frac{-1980\left(36-20\sqrt{3}\right)}{1296-1200}
1200 ପ୍ରାପ୍ତ କରିବାକୁ 400 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
\frac{-1980\left(36-20\sqrt{3}\right)}{96}
96 ପ୍ରାପ୍ତ କରିବାକୁ 1296 ଏବଂ 1200 ବିୟୋଗ କରନ୍ତୁ.
-\frac{165}{8}\left(36-20\sqrt{3}\right)
-\frac{165}{8}\left(36-20\sqrt{3}\right) ପ୍ରାପ୍ତ କରିବାକୁ -1980\left(36-20\sqrt{3}\right) କୁ 96 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
-\frac{165}{8}\times 36-\frac{165}{8}\left(-20\right)\sqrt{3}
-\frac{165}{8} କୁ 36-20\sqrt{3} ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
\frac{-165\times 36}{8}-\frac{165}{8}\left(-20\right)\sqrt{3}
-\frac{165}{8}\times 36 କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\frac{-5940}{8}-\frac{165}{8}\left(-20\right)\sqrt{3}
-5940 ପ୍ରାପ୍ତ କରିବାକୁ -165 ଏବଂ 36 ଗୁଣନ କରନ୍ତୁ.
-\frac{1485}{2}-\frac{165}{8}\left(-20\right)\sqrt{3}
4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{-5940}{8} ହ୍ରାସ କରନ୍ତୁ.
-\frac{1485}{2}+\frac{-165\left(-20\right)}{8}\sqrt{3}
-\frac{165}{8}\left(-20\right) କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
-\frac{1485}{2}+\frac{3300}{8}\sqrt{3}
3300 ପ୍ରାପ୍ତ କରିବାକୁ -165 ଏବଂ -20 ଗୁଣନ କରନ୍ତୁ.
-\frac{1485}{2}+\frac{825}{2}\sqrt{3}
4 ବାହାର କରିବା ଏବଂ ବାତିଲ୍ କରିବା ଦ୍ୱାରା ନିମ୍ନତମ ପଦରେ ଅନ୍ତରାଳ \frac{3300}{8} ହ୍ରାସ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}