ମୂଲ୍ୟାୟନ କରିବା
\frac{4}{x}
w.r.t. x ର ପ୍ରଭେଦ ଦର୍ଶାନ୍ତୁ
-\frac{4}{x^{2}}
ଗ୍ରାଫ୍
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{12}{x\left(x+2\right)}-\frac{2}{x}+\frac{6}{x+2}
ଗୁଣନିୟକ x^{2}+2x.
\frac{12}{x\left(x+2\right)}-\frac{2\left(x+2\right)}{x\left(x+2\right)}+\frac{6}{x+2}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x\left(x+2\right) ଏବଂ x ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି x\left(x+2\right). \frac{2}{x} କୁ \frac{x+2}{x+2} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{12-2\left(x+2\right)}{x\left(x+2\right)}+\frac{6}{x+2}
ଯେହେତୁ \frac{12}{x\left(x+2\right)} ଏବଂ \frac{2\left(x+2\right)}{x\left(x+2\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{12-2x-4}{x\left(x+2\right)}+\frac{6}{x+2}
12-2\left(x+2\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{8-2x}{x\left(x+2\right)}+\frac{6}{x+2}
12-2x-4ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{8-2x}{x\left(x+2\right)}+\frac{6x}{x\left(x+2\right)}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x\left(x+2\right) ଏବଂ x+2 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି x\left(x+2\right). \frac{6}{x+2} କୁ \frac{x}{x} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{8-2x+6x}{x\left(x+2\right)}
ଯେହେତୁ \frac{8-2x}{x\left(x+2\right)} ଏବଂ \frac{6x}{x\left(x+2\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{8+4x}{x\left(x+2\right)}
8-2x+6xରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{4\left(x+2\right)}{x\left(x+2\right)}
\frac{8+4x}{x\left(x+2\right)} ରେ ପୂର୍ବରୁ ଗୁଣକ ବାହାରି ନଥିବା ଅଭିବ୍ୟକ୍ତିଗୁଡିକର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\frac{4}{x}
ଉଭୟ ଲବ ଓ ହରରେ x+2 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12}{x\left(x+2\right)}-\frac{2}{x}+\frac{6}{x+2})
ଗୁଣନିୟକ x^{2}+2x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12}{x\left(x+2\right)}-\frac{2\left(x+2\right)}{x\left(x+2\right)}+\frac{6}{x+2})
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x\left(x+2\right) ଏବଂ x ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି x\left(x+2\right). \frac{2}{x} କୁ \frac{x+2}{x+2} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12-2\left(x+2\right)}{x\left(x+2\right)}+\frac{6}{x+2})
ଯେହେତୁ \frac{12}{x\left(x+2\right)} ଏବଂ \frac{2\left(x+2\right)}{x\left(x+2\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{12-2x-4}{x\left(x+2\right)}+\frac{6}{x+2})
12-2\left(x+2\right) ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8-2x}{x\left(x+2\right)}+\frac{6}{x+2})
12-2x-4ରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8-2x}{x\left(x+2\right)}+\frac{6x}{x\left(x+2\right)})
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. x\left(x+2\right) ଏବଂ x+2 ର ଲଘିଷ୍ଟ ସାଧାରଣ ଗୁଣନିୟକ ହେଉଛି x\left(x+2\right). \frac{6}{x+2} କୁ \frac{x}{x} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8-2x+6x}{x\left(x+2\right)})
ଯେହେତୁ \frac{8-2x}{x\left(x+2\right)} ଏବଂ \frac{6x}{x\left(x+2\right)} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{8+4x}{x\left(x+2\right)})
8-2x+6xରେ ସମାନ ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4\left(x+2\right)}{x\left(x+2\right)})
\frac{8+4x}{x\left(x+2\right)} ରେ ପୂର୍ବରୁ ଗୁଣକ ବାହାରି ନଥିବା ଅଭିବ୍ୟକ୍ତିଗୁଡିକର ଗୁଣକ ନିର୍ଣ୍ଣୟ କରନ୍ତୁ.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{4}{x})
ଉଭୟ ଲବ ଓ ହରରେ x+2 ପ୍ରତ୍ୟାହାର କରନ୍ତୁ.
-4x^{-1-1}
ax^{n} ର ଉତ୍ପନ୍ନ ହେଉଛି nax^{n-1}.
-4x^{-2}
-1 ରୁ 1 ବିୟୋଗ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}