ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

10+\left(x-4\right)\times 5+\left(x-4\right)\left(x+2\right)=0
ଭାରିଏବୁଲ୍‌ x ମୂଲ୍ୟଗୁଡିକ -2,4 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(x-4\right)\left(x+2\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x^{2}-2x-8,x+2 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
10+5x-20+\left(x-4\right)\left(x+2\right)=0
x-4 କୁ 5 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-10+5x+\left(x-4\right)\left(x+2\right)=0
-10 ପ୍ରାପ୍ତ କରିବାକୁ 10 ଏବଂ 20 ବିୟୋଗ କରନ୍ତୁ.
-10+5x+x^{2}-2x-8=0
x-4 କୁ x+2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
-10+3x+x^{2}-8=0
3x ପାଇବାକୁ 5x ଏବଂ -2x ସମ୍ମେଳନ କରନ୍ତୁ.
-18+3x+x^{2}=0
-18 ପ୍ରାପ୍ତ କରିବାକୁ -10 ଏବଂ 8 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+3x-18=0
ଏହାକୁ ଏକ ମାନାଙ୍କ ରୂପେରେ ରଖିବା ପାଇଁ ପଲିନୋମିଆଲକୁ ପୁନଃବ୍ୟବସ୍ଥିତ କରନ୍ତୁ. ବଡରୁ ସାନ ପାୱାର୍‌ କ୍ରମରେ ପଦଗୁଡିକୁ ରଖନ୍ତୁ.
a+b=3 ab=-18
ସମୀକରଣକୁ ସମାଧାନ କରିବାକୁ, ସୂତ୍ର x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ବ୍ୟବହାର କରି x^{2}+3x-18 ର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,18 -2,9 -3,6
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -18 ପ୍ରଦାନ କରିଥାଏ.
-1+18=17 -2+9=7 -3+6=3
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-3 b=6
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 3 ପ୍ରଦାନ କରିଥାଏ.
\left(x-3\right)\left(x+6\right)
ପ୍ରାପ୍ତ ମୂଲ୍ୟଗୁଡିକ ବ୍ୟବହାର କରି ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି \left(x+a\right)\left(x+b\right) ପୁନଃଲେଖନ୍ତୁ.
x=3 x=-6
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-3=0 ଏବଂ x+6=0 ସମାଧାନ କରନ୍ତୁ.
10+\left(x-4\right)\times 5+\left(x-4\right)\left(x+2\right)=0
ଭାରିଏବୁଲ୍‌ x ମୂଲ୍ୟଗୁଡିକ -2,4 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(x-4\right)\left(x+2\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x^{2}-2x-8,x+2 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
10+5x-20+\left(x-4\right)\left(x+2\right)=0
x-4 କୁ 5 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-10+5x+\left(x-4\right)\left(x+2\right)=0
-10 ପ୍ରାପ୍ତ କରିବାକୁ 10 ଏବଂ 20 ବିୟୋଗ କରନ୍ତୁ.
-10+5x+x^{2}-2x-8=0
x-4 କୁ x+2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
-10+3x+x^{2}-8=0
3x ପାଇବାକୁ 5x ଏବଂ -2x ସମ୍ମେଳନ କରନ୍ତୁ.
-18+3x+x^{2}=0
-18 ପ୍ରାପ୍ତ କରିବାକୁ -10 ଏବଂ 8 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+3x-18=0
ଏହାକୁ ଏକ ମାନାଙ୍କ ରୂପେରେ ରଖିବା ପାଇଁ ପଲିନୋମିଆଲକୁ ପୁନଃବ୍ୟବସ୍ଥିତ କରନ୍ତୁ. ବଡରୁ ସାନ ପାୱାର୍‌ କ୍ରମରେ ପଦଗୁଡିକୁ ରଖନ୍ତୁ.
a+b=3 ab=1\left(-18\right)=-18
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ x^{2}+ax+bx-18 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,18 -2,9 -3,6
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -18 ପ୍ରଦାନ କରିଥାଏ.
-1+18=17 -2+9=7 -3+6=3
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-3 b=6
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 3 ପ୍ରଦାନ କରିଥାଏ.
\left(x^{2}-3x\right)+\left(6x-18\right)
\left(x^{2}-3x\right)+\left(6x-18\right) ଭାବରେ x^{2}+3x-18 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(x-3\right)+6\left(x-3\right)
ପ୍ରଥମଟିରେ x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 6 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-3\right)\left(x+6\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-3 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=3 x=-6
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-3=0 ଏବଂ x+6=0 ସମାଧାନ କରନ୍ତୁ.
10+\left(x-4\right)\times 5+\left(x-4\right)\left(x+2\right)=0
ଭାରିଏବୁଲ୍‌ x ମୂଲ୍ୟଗୁଡିକ -2,4 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(x-4\right)\left(x+2\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x^{2}-2x-8,x+2 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
10+5x-20+\left(x-4\right)\left(x+2\right)=0
x-4 କୁ 5 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-10+5x+\left(x-4\right)\left(x+2\right)=0
-10 ପ୍ରାପ୍ତ କରିବାକୁ 10 ଏବଂ 20 ବିୟୋଗ କରନ୍ତୁ.
-10+5x+x^{2}-2x-8=0
x-4 କୁ x+2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
-10+3x+x^{2}-8=0
3x ପାଇବାକୁ 5x ଏବଂ -2x ସମ୍ମେଳନ କରନ୍ତୁ.
-18+3x+x^{2}=0
-18 ପ୍ରାପ୍ତ କରିବାକୁ -10 ଏବଂ 8 ବିୟୋଗ କରନ୍ତୁ.
x^{2}+3x-18=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-3±\sqrt{3^{2}-4\left(-18\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 3, ଏବଂ c ପାଇଁ -18 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-3±\sqrt{9-4\left(-18\right)}}{2}
ବର୍ଗ 3.
x=\frac{-3±\sqrt{9+72}}{2}
-4 କୁ -18 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-3±\sqrt{81}}{2}
9 କୁ 72 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-3±9}{2}
81 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{6}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-3±9}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -3 କୁ 9 ସହ ଯୋଡନ୍ତୁ.
x=3
6 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{12}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-3±9}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -3 ରୁ 9 ବିୟୋଗ କରନ୍ତୁ.
x=-6
-12 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=3 x=-6
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
10+\left(x-4\right)\times 5+\left(x-4\right)\left(x+2\right)=0
ଭାରିଏବୁଲ୍‌ x ମୂଲ୍ୟଗୁଡିକ -2,4 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(x-4\right)\left(x+2\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x^{2}-2x-8,x+2 ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
10+5x-20+\left(x-4\right)\left(x+2\right)=0
x-4 କୁ 5 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-10+5x+\left(x-4\right)\left(x+2\right)=0
-10 ପ୍ରାପ୍ତ କରିବାକୁ 10 ଏବଂ 20 ବିୟୋଗ କରନ୍ତୁ.
-10+5x+x^{2}-2x-8=0
x-4 କୁ x+2 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ ଏବଂ ଏକାପରି ପଦଗୁଡିକୁ ସମ୍ମେଳନ କରନ୍ତୁ.
-10+3x+x^{2}-8=0
3x ପାଇବାକୁ 5x ଏବଂ -2x ସମ୍ମେଳନ କରନ୍ତୁ.
-18+3x+x^{2}=0
-18 ପ୍ରାପ୍ତ କରିବାକୁ -10 ଏବଂ 8 ବିୟୋଗ କରନ୍ତୁ.
3x+x^{2}=18
ଉଭୟ ପାର୍ଶ୍ଵକୁ 18 ଯୋଡନ୍ତୁ. ଯାହାକିଛି ସହିତ ଶୂନ୍ୟ ଯୋଗ ହେଲେ ସେହି ସଂଖ୍ୟା ମିଳିଥାଏ.
x^{2}+3x=18
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=18+\left(\frac{3}{2}\right)^{2}
\frac{3}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 3 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{3}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+3x+\frac{9}{4}=18+\frac{9}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{3}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+3x+\frac{9}{4}=\frac{81}{4}
18 କୁ \frac{9}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x+\frac{3}{2}\right)^{2}=\frac{81}{4}
ଗୁଣନୀୟକ x^{2}+3x+\frac{9}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{3}{2}=\frac{9}{2} x+\frac{3}{2}=-\frac{9}{2}
ସରଳୀକୃତ କରିବା.
x=3 x=-6
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{3}{2} ବିୟୋଗ କରନ୍ତୁ.