ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\frac{1}{4}x-2x\left(x+6\right)=0
-2 ପ୍ରାପ୍ତ କରିବାକୁ -1 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
\frac{1}{4}x-2x^{2}-12x=0
-2x କୁ x+6 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-\frac{47}{4}x-2x^{2}=0
-\frac{47}{4}x ପାଇବାକୁ \frac{1}{4}x ଏବଂ -12x ସମ୍ମେଳନ କରନ୍ତୁ.
x\left(-\frac{47}{4}-2x\right)=0
x ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=0 x=-\frac{47}{8}
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x=0 ଏବଂ -\frac{47}{4}-2x=0 ସମାଧାନ କରନ୍ତୁ.
\frac{1}{4}x-2x\left(x+6\right)=0
-2 ପ୍ରାପ୍ତ କରିବାକୁ -1 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
\frac{1}{4}x-2x^{2}-12x=0
-2x କୁ x+6 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-\frac{47}{4}x-2x^{2}=0
-\frac{47}{4}x ପାଇବାକୁ \frac{1}{4}x ଏବଂ -12x ସମ୍ମେଳନ କରନ୍ତୁ.
-2x^{2}-\frac{47}{4}x=0
ଏହି ପ୍ରଣାଳୀର ax^{2}+bx+c=0 ସମସ୍ତ ସମୀକରଣଗୁଡିକ କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ବ୍ୟବହାର କରି ସମାଧାନ କରାଯାଇପାରିବ. କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ର ଦୁଇଟି ସମାଧାନ ପ୍ରଦାନ କରିଥାଏ, ଗୋଟିଏ ଯେତେବେଳେ ± ଯୋଗ ହୋଇଥାଏ ଏବଂ ଅନ୍ୟଟି ଯେତେବେଳେ ଏହା ବିୟୋଗ ହୋଇଥାଏ.
x=\frac{-\left(-\frac{47}{4}\right)±\sqrt{\left(-\frac{47}{4}\right)^{2}}}{2\left(-2\right)}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ -2, b ପାଇଁ -\frac{47}{4}, ଏବଂ c ପାଇଁ 0 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-\left(-\frac{47}{4}\right)±\frac{47}{4}}{2\left(-2\right)}
\left(-\frac{47}{4}\right)^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{\frac{47}{4}±\frac{47}{4}}{2\left(-2\right)}
-\frac{47}{4} ର ବିପରୀତ ହେଉଛି \frac{47}{4}.
x=\frac{\frac{47}{4}±\frac{47}{4}}{-4}
2 କୁ -2 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{\frac{47}{2}}{-4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{\frac{47}{4}±\frac{47}{4}}{-4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ଯୋଗ କରିବା ଦ୍ୱାରା \frac{47}{4} ସହିତ \frac{47}{4} ଯୋଡନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
x=-\frac{47}{8}
\frac{47}{2} କୁ -4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=\frac{0}{-4}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{\frac{47}{4}±\frac{47}{4}}{-4} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. ଏକ ସାଧାରଣ ହର ବାହାର କରିବା ସହିତ ଲବଗୁଡିକ ବିୟୋଗ କରିବା ଦ୍ୱାରା \frac{47}{4} ରୁ \frac{47}{4} ବିୟୋଗ କରନ୍ତୁ. ତାପରେ ଭଗ୍ନାଂଶକୁ ସର୍ବନିମ୍ନ ପଦକୁ ହ୍ରାସ କରନ୍ତୁ ଯଦି ସମ୍ଭବ ହୁଏ.
x=0
0 କୁ -4 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{47}{8} x=0
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
\frac{1}{4}x-2x\left(x+6\right)=0
-2 ପ୍ରାପ୍ତ କରିବାକୁ -1 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
\frac{1}{4}x-2x^{2}-12x=0
-2x କୁ x+6 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
-\frac{47}{4}x-2x^{2}=0
-\frac{47}{4}x ପାଇବାକୁ \frac{1}{4}x ଏବଂ -12x ସମ୍ମେଳନ କରନ୍ତୁ.
-2x^{2}-\frac{47}{4}x=0
କ୍ୱାଡ୍ରାଟିକ୍‌ ସମୀକରଣଗୁଡିକ ଯେପରିକି ଏହି ଗୋଟିଏ ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ଦ୍ୱାରା ସମାଧାନ କରାଯାଇପାରିବ. ବର୍ଗ ବାହାର କରିବା ସମ୍ପୂର୍ଣ୍ଣ କରିବା ପାଇଁ, ସମୀକରଣ ପ୍ରଥମେ x^{2}+bx=c ପ୍ରକାରେ ହେବା ଆବଶ୍ୟକ.
\frac{-2x^{2}-\frac{47}{4}x}{-2}=\frac{0}{-2}
ଉଭୟ ପାର୍ଶ୍ୱକୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\left(-\frac{\frac{47}{4}}{-2}\right)x=\frac{0}{-2}
-2 ଦ୍ୱାରା ବିଭାଜନ କରିବା -2 ଦ୍ୱାରା ଗୁଣନକୁ ପୂର୍ବବତ୍‌ କରିଥାଏ.
x^{2}+\frac{47}{8}x=\frac{0}{-2}
-\frac{47}{4} କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{47}{8}x=0
0 କୁ -2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x^{2}+\frac{47}{8}x+\left(\frac{47}{16}\right)^{2}=\left(\frac{47}{16}\right)^{2}
\frac{47}{16} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, \frac{47}{8} କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{47}{16} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+\frac{47}{8}x+\frac{2209}{256}=\frac{2209}{256}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{47}{16} ବର୍ଗ ବାହାର କରନ୍ତୁ.
\left(x+\frac{47}{16}\right)^{2}=\frac{2209}{256}
ଗୁଣନୀୟକ x^{2}+\frac{47}{8}x+\frac{2209}{256}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{47}{16}\right)^{2}}=\sqrt{\frac{2209}{256}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{47}{16}=\frac{47}{16} x+\frac{47}{16}=-\frac{47}{16}
ସରଳୀକୃତ କରିବା.
x=0 x=-\frac{47}{8}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{47}{16} ବିୟୋଗ କରନ୍ତୁ.