ମୂଲ୍ୟାୟନ କରିବା
-2
ଗୁଣକ
-2
କ୍ୱିଜ୍
Arithmetic
5 ଟି ପ୍ରଶ୍ନ ଏହି ପରି ଅଟେ:
\frac{ 1 }{ -2- \sqrt{ 2 } } + \frac{ 1 }{ -2+ \sqrt{ 2 } }
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{-2+\sqrt{2}}{\left(-2-\sqrt{2}\right)\left(-2+\sqrt{2}\right)}+\frac{1}{-2+\sqrt{2}}
ଲବ ଓ ହରକୁ -2+\sqrt{2} ଦ୍ୱାରା ଗୁଣନ କରି \frac{1}{-2-\sqrt{2}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
\frac{-2+\sqrt{2}}{\left(-2\right)^{2}-\left(\sqrt{2}\right)^{2}}+\frac{1}{-2+\sqrt{2}}
\left(-2-\sqrt{2}\right)\left(-2+\sqrt{2}\right)କୁ ବିବେଚନା କରନ୍ତୁ. ନିୟମ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} ବ୍ୟବହାର କରି ଗୁଣନକୁ ବର୍ଗଗୁଡିକ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟରେ ରୂପାନ୍ତରିତ କରାଯାଇପାରିବ.
\frac{-2+\sqrt{2}}{4-2}+\frac{1}{-2+\sqrt{2}}
ବର୍ଗ -2. ବର୍ଗ \sqrt{2}.
\frac{-2+\sqrt{2}}{2}+\frac{1}{-2+\sqrt{2}}
2 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 2 ବିୟୋଗ କରନ୍ତୁ.
\frac{-2+\sqrt{2}}{2}+\frac{-2-\sqrt{2}}{\left(-2+\sqrt{2}\right)\left(-2-\sqrt{2}\right)}
ଲବ ଓ ହରକୁ -2-\sqrt{2} ଦ୍ୱାରା ଗୁଣନ କରି \frac{1}{-2+\sqrt{2}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
\frac{-2+\sqrt{2}}{2}+\frac{-2-\sqrt{2}}{\left(-2\right)^{2}-\left(\sqrt{2}\right)^{2}}
\left(-2+\sqrt{2}\right)\left(-2-\sqrt{2}\right)କୁ ବିବେଚନା କରନ୍ତୁ. ନିୟମ: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2} ବ୍ୟବହାର କରି ଗୁଣନକୁ ବର୍ଗଗୁଡିକ ମଧ୍ୟରେ ପାର୍ଥକ୍ୟରେ ରୂପାନ୍ତରିତ କରାଯାଇପାରିବ.
\frac{-2+\sqrt{2}}{2}+\frac{-2-\sqrt{2}}{4-2}
ବର୍ଗ -2. ବର୍ଗ \sqrt{2}.
\frac{-2+\sqrt{2}}{2}+\frac{-2-\sqrt{2}}{2}
2 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 2 ବିୟୋଗ କରନ୍ତୁ.
\frac{-2+\sqrt{2}-2-\sqrt{2}}{2}
ଯେହେତୁ \frac{-2+\sqrt{2}}{2} ଏବଂ \frac{-2-\sqrt{2}}{2} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକ ଯୋଗ କରନ୍ତୁ.
\frac{-4}{2}
-2+\sqrt{2}-2-\sqrt{2} ରେ ହିସାବଗୁଡିକ କରନ୍ତୁ.
-2
-2 ପ୍ରାପ୍ତ କରିବାକୁ -4 କୁ 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}