ମୂଲ୍ୟାୟନ କରିବା
2\sqrt{3}+1\approx 4.464101615
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{2\sqrt{6}+\sqrt{8}}{\sqrt{2}}-1
ଗୁଣନିୟକ 24=2^{2}\times 6. ସ୍କେୟାର୍ ରୁଟ୍ \sqrt{2^{2}}\sqrt{6} ର ଉତ୍ପାଦଭାବରେ ଉତ୍ପାଦ \sqrt{2^{2}\times 6} ର ସ୍କେୟାର୍ ରୁଟ୍ ପୁଣି ଲେଖନ୍ତୁ. 2^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
\frac{2\sqrt{6}+2\sqrt{2}}{\sqrt{2}}-1
ଗୁଣନିୟକ 8=2^{2}\times 2. ସ୍କେୟାର୍ ରୁଟ୍ \sqrt{2^{2}}\sqrt{2} ର ଉତ୍ପାଦଭାବରେ ଉତ୍ପାଦ \sqrt{2^{2}\times 2} ର ସ୍କେୟାର୍ ରୁଟ୍ ପୁଣି ଲେଖନ୍ତୁ. 2^{2} ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
\frac{\left(2\sqrt{6}+2\sqrt{2}\right)\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-1
ଲବ ଓ ହରକୁ \sqrt{2} ଦ୍ୱାରା ଗୁଣନ କରି \frac{2\sqrt{6}+2\sqrt{2}}{\sqrt{2}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
\frac{\left(2\sqrt{6}+2\sqrt{2}\right)\sqrt{2}}{2}-1
\sqrt{2} ର ଚତୁର୍ଭୁଜ ହେଉଛି 2.
\frac{\left(2\sqrt{6}+2\sqrt{2}\right)\sqrt{2}}{2}-\frac{2}{2}
ଏକ୍ସପ୍ରେସନ୍ରେ ଯୋଗ କିମ୍ବା ବିଯୋଗ କରିବାକୁ, ସେଗୁଡିକର ହରଗୁଡିକୁ ସମାନ କରିବାକୁ ସେଗୁଡିକୁ ବିସ୍ତାରିତ କରନ୍ତୁ. 1 କୁ \frac{2}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\left(2\sqrt{6}+2\sqrt{2}\right)\sqrt{2}-2}{2}
ଯେହେତୁ \frac{\left(2\sqrt{6}+2\sqrt{2}\right)\sqrt{2}}{2} ଏବଂ \frac{2}{2} ର ସମାନ ହର ରହିଛି, ସେଗୁଡିକର ହରଗୁଡିକୁ ବିଯୋଗ କରିବା ଦ୍ୱାରା ସେଗୁଡିକୁ ବିଯୋଗ କରନ୍ତୁ.
\frac{4\sqrt{3}+4-2}{2}
\left(2\sqrt{6}+2\sqrt{2}\right)\sqrt{2}-2 ରେ ଗୁଣନଗୁଡିକ କରନ୍ତୁ.
\frac{4\sqrt{3}+2}{2}
4\sqrt{3}+4-2 ରେ ହିସାବଗୁଡିକ କରନ୍ତୁ.
2\sqrt{3}+1
2\sqrt{3}+1 ପ୍ରାପ୍ତ କରିବାକୁ 4\sqrt{3}+2 ର ପ୍ରତିଟି ପଦକୁ 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}