ମୂଲ୍ୟାୟନ କରିବା
\frac{\sqrt{6}}{12}\approx 0.204124145
ଅଂଶୀଦାର
କ୍ଲିପ୍ ବୋର୍ଡ଼ରେ ନକଲ କରାଯାଇଛି
\frac{\frac{1}{2}\cos(45)}{\tan(60)}
ତ୍ରିକୋଣମିତୀୟ ମୂଲ୍ୟ ସାରଣୀରୁ \sin(30)ର ମୂଲ୍ୟ ପ୍ରାପ୍ତ କରନ୍ତୁ।
\frac{\frac{1}{2}\times \frac{\sqrt{2}}{2}}{\tan(60)}
ତ୍ରିକୋଣମିତୀୟ ମୂଲ୍ୟ ସାରଣୀରୁ \cos(45)ର ମୂଲ୍ୟ ପ୍ରାପ୍ତ କରନ୍ତୁ।
\frac{\frac{\sqrt{2}}{2\times 2}}{\tan(60)}
ଲବ ଯେତେ ଥର ରହିଛି ଲବ ସହିତ ଏବଂ ହର ଯେତେ ଥର ରହିଛି ହର ସହିତ ଗୁଣନ କରିବା ଦ୍ୱାରା \frac{1}{2} କୁ \frac{\sqrt{2}}{2} ଥର ଗୁଣନ କରନ୍ତୁ.
\frac{\frac{\sqrt{2}}{2\times 2}}{\sqrt{3}}
ତ୍ରିକୋଣମିତୀୟ ମୂଲ୍ୟ ସାରଣୀରୁ \tan(60)ର ମୂଲ୍ୟ ପ୍ରାପ୍ତ କରନ୍ତୁ।
\frac{\sqrt{2}}{2\times 2\sqrt{3}}
\frac{\frac{\sqrt{2}}{2\times 2}}{\sqrt{3}} କୁ ଗୋଟିଏ ଏକକ ଭଗ୍ନାଂଶ ଭାବେ ପ୍ରକାଶ କରନ୍ତୁ.
\frac{\sqrt{2}\sqrt{3}}{2\times 2\left(\sqrt{3}\right)^{2}}
ଲବ ଓ ହରକୁ \sqrt{3} ଦ୍ୱାରା ଗୁଣନ କରି \frac{\sqrt{2}}{2\times 2\sqrt{3}}ର ହରକୁ ପରିମେୟ ସଂଖ୍ୟାରେ ପରିଣତ କରନ୍ତୁ.
\frac{\sqrt{2}\sqrt{3}}{2\times 2\times 3}
\sqrt{3} ର ଚତୁର୍ଭୁଜ ହେଉଛି 3.
\frac{\sqrt{6}}{2\times 2\times 3}
ଏକାଧିକ \sqrt{2} ଏବଂ \sqrt{3}କୁ, ସ୍କେୟାର୍ ରୁଟ୍ରେ ଏକାଧିକ ସଂଖ୍ୟା.
\frac{\sqrt{6}}{4\times 3}
4 ପ୍ରାପ୍ତ କରିବାକୁ 2 ଏବଂ 2 ଗୁଣନ କରନ୍ତୁ.
\frac{\sqrt{6}}{12}
12 ପ୍ରାପ୍ତ କରିବାକୁ 4 ଏବଂ 3 ଗୁଣନ କରନ୍ତୁ.
ଉଦାହରଣଗୁଡ଼ିକ
ଚତୁଷ୍ପଦୀ ସମୀକରଣ
{ x } ^ { 2 } - 4 x - 5 = 0
ତ୍ରିକୋଣମିତି
4 \sin \theta \cos \theta = 2 \sin \theta
ରୈଖିକ ସମୀକରଣ
y = 3x + 4
ବୀଜଗଣିତ
699 * 533
ମାଟ୍ରିକ୍ସ୍
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ସମକାଳୀନ ସମୀକରଣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ବିଭେଦୀକରଣ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ଇଣ୍ଟିଗ୍ରେସନ୍
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ସୀମାଗୁଡ଼ିକ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}