ମୁଖ୍ୟ ବିଷୟବସ୍ତୁକୁ ଛାଡି ଦିଅନ୍ତୁ
x ପାଇଁ ସମାଧାନ କରନ୍ତୁ
Tick mark Image
ଗ୍ରାଫ୍

ୱେବ୍ ସନ୍ଧାନରୁ ସମାନ ପ୍ରକାରର ସମସ୍ୟା

ଅଂଶୀଦାର

\left(x+7\right)x+\left(x-5\right)\times 6=12x
ଭାରିଏବୁଲ୍‌ x ମୂଲ୍ୟଗୁଡିକ -7,5 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(x-5\right)\left(x+7\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x-5,x+7,\left(x-5\right)\left(x+7\right) ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
x^{2}+7x+\left(x-5\right)\times 6=12x
x+7 କୁ x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+7x+6x-30=12x
x-5 କୁ 6 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+13x-30=12x
13x ପାଇବାକୁ 7x ଏବଂ 6x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+13x-30-12x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 12x ବିୟୋଗ କରନ୍ତୁ.
x^{2}+x-30=0
x ପାଇବାକୁ 13x ଏବଂ -12x ସମ୍ମେଳନ କରନ୍ତୁ.
a+b=1 ab=-30
ସମୀକରଣକୁ ସମାଧାନ କରିବାକୁ, ସୂତ୍ର x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ବ୍ୟବହାର କରି x^{2}+x-30 ର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,30 -2,15 -3,10 -5,6
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -30 ପ୍ରଦାନ କରିଥାଏ.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-5 b=6
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 1 ପ୍ରଦାନ କରିଥାଏ.
\left(x-5\right)\left(x+6\right)
ପ୍ରାପ୍ତ ମୂଲ୍ୟଗୁଡିକ ବ୍ୟବହାର କରି ଫ୍ୟାକ୍ଟରଯୁକ୍ତ ଅଭିବ୍ୟକ୍ତି \left(x+a\right)\left(x+b\right) ପୁନଃଲେଖନ୍ତୁ.
x=5 x=-6
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-5=0 ଏବଂ x+6=0 ସମାଧାନ କରନ୍ତୁ.
x=-6
ଭାରିଏବୁଲ୍‌ x 5 ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ.
\left(x+7\right)x+\left(x-5\right)\times 6=12x
ଭାରିଏବୁଲ୍‌ x ମୂଲ୍ୟଗୁଡିକ -7,5 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(x-5\right)\left(x+7\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x-5,x+7,\left(x-5\right)\left(x+7\right) ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
x^{2}+7x+\left(x-5\right)\times 6=12x
x+7 କୁ x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+7x+6x-30=12x
x-5 କୁ 6 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+13x-30=12x
13x ପାଇବାକୁ 7x ଏବଂ 6x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+13x-30-12x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 12x ବିୟୋଗ କରନ୍ତୁ.
x^{2}+x-30=0
x ପାଇବାକୁ 13x ଏବଂ -12x ସମ୍ମେଳନ କରନ୍ତୁ.
a+b=1 ab=1\left(-30\right)=-30
ସମୀକରଣ ସମାଧାନ କରିବାକୁ, ଗୋଷ୍ଠୀଭୁକ୍ତ କରଣ କରିବା ଦ୍ୱାରା ବାମ ହାତ ପାର୍ଶ୍ୱର ଫ୍ୟାକ୍ଟର୍‌ ବାହାର କରନ୍ତୁ. ପ୍ରଥମେ, ବାମ ହାତ ପାର୍ଶ୍ୱ x^{2}+ax+bx-30 ଭାବେ ପୁନଃ ଲେଖାଯିବା ଆବଶ୍ୟକ. a ଏବଂ b ନିର୍ଣ୍ଣୟ କରିବାକୁ, ସମାଧାନ କରିବାକୁ ଏକ ସିଷ୍ଟମ୍‌ ସେଟ୍‌ ଅପ୍‌ କରନ୍ତୁ.
-1,30 -2,15 -3,10 -5,6
ଯେହେତୁ ab ଋଣାତ୍ମକ ଅଟେ, ଉଭୟ a ଏବଂ b ର ବିପରୀତ ଚିହ୍ନ ରହିଥାଏ. ଯେହେତୁ a+b ଧନାତ୍ମକ ଅଟେ, ଧନାତ୍ମକ ସଂଖ୍ୟା ଋଣାତ୍ମକ ସଂଖ୍ୟା ଠାରୁ ବଡ ଆବସଲ୍ୟୁଟ୍‌ ମୂଲ୍ୟ ରହିଥାଏ. ଏହିଭଳି ସମସ୍ତ ଇଣ୍ଟିଜର୍ ଯୋଡାର ତାଲିକା ପ୍ରସ୍ତୁତ କରନ୍ତୁ ଯାହା ଉତ୍ପାଦ -30 ପ୍ରଦାନ କରିଥାଏ.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
ପ୍ରତି ଯୋଡା ପାଇଁ ସମଷ୍ଟି ହିସାବ କରନ୍ତୁ.
a=-5 b=6
ସମାଧାନଟି ହେଉଛି ସେହି ଯୋଡା ଯାହା ସମଷ୍ଟି 1 ପ୍ରଦାନ କରିଥାଏ.
\left(x^{2}-5x\right)+\left(6x-30\right)
\left(x^{2}-5x\right)+\left(6x-30\right) ଭାବରେ x^{2}+x-30 ପୁନଃ ଲେଖନ୍ତୁ.
x\left(x-5\right)+6\left(x-5\right)
ପ୍ରଥମଟିରେ x ଏବଂ ଦ୍ୱିତୀୟ ଗୋଷ୍ଠୀରେ 6 ର ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
\left(x-5\right)\left(x+6\right)
ଡିଷ୍ଟ୍ରିବ୍ୟୁଟିଭ୍ ପ୍ରପର୍ଟି (ବିତରଣ ବୈଶିଷ୍ଟ୍ୟ) ବ୍ୟବହାର କରି ସାଧାରଣ ପଦ x-5 ଗୁଣନିୟକ ବାହାର କରନ୍ତୁ.
x=5 x=-6
ସମୀକରଣ ସମାଧାନଗୁଡିକ ନିର୍ଣ୍ଣୟ କରିବାକୁ, x-5=0 ଏବଂ x+6=0 ସମାଧାନ କରନ୍ତୁ.
x=-6
ଭାରିଏବୁଲ୍‌ x 5 ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ.
\left(x+7\right)x+\left(x-5\right)\times 6=12x
ଭାରିଏବୁଲ୍‌ x ମୂଲ୍ୟଗୁଡିକ -7,5 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(x-5\right)\left(x+7\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x-5,x+7,\left(x-5\right)\left(x+7\right) ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
x^{2}+7x+\left(x-5\right)\times 6=12x
x+7 କୁ x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+7x+6x-30=12x
x-5 କୁ 6 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+13x-30=12x
13x ପାଇବାକୁ 7x ଏବଂ 6x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+13x-30-12x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 12x ବିୟୋଗ କରନ୍ତୁ.
x^{2}+x-30=0
x ପାଇବାକୁ 13x ଏବଂ -12x ସମ୍ମେଳନ କରନ୍ତୁ.
x=\frac{-1±\sqrt{1^{2}-4\left(-30\right)}}{2}
ଏହି ସମୀକରଣ ମାନାଙ୍କ ଆକାରରେ ରହିଛି: ax^{2}+bx+c=0. \frac{-b±\sqrt{b^{2}-4ac}}{2a} କ୍ୱାଡ୍ରାଟିକ୍‌ ସୂତ୍ରରେ, a ପାଇଁ 1, b ପାଇଁ 1, ଏବଂ c ପାଇଁ -30 ପ୍ରତିବଦଳ କରନ୍ତୁ.
x=\frac{-1±\sqrt{1-4\left(-30\right)}}{2}
ବର୍ଗ 1.
x=\frac{-1±\sqrt{1+120}}{2}
-4 କୁ -30 ଥର ଗୁଣନ କରନ୍ତୁ.
x=\frac{-1±\sqrt{121}}{2}
1 କୁ 120 ସହ ଯୋଡନ୍ତୁ.
x=\frac{-1±11}{2}
121 ର ବର୍ଗମୂଳ ବାହାର କରନ୍ତୁ.
x=\frac{10}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-1±11}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ଯୁକ୍ତ ଅଟେ. -1 କୁ 11 ସହ ଯୋଡନ୍ତୁ.
x=5
10 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=-\frac{12}{2}
ବର୍ତ୍ତମାନ ସମୀକରଣ x=\frac{-1±11}{2} ସମାଧାନ କରନ୍ତୁ ଯେତେବେଳେ ± ବିଯୁକ୍ତ ଅଟେ. -1 ରୁ 11 ବିୟୋଗ କରନ୍ତୁ.
x=-6
-12 କୁ 2 ଦ୍ୱାରା ବିଭାଜନ କରନ୍ତୁ.
x=5 x=-6
ବର୍ତ୍ତମାନ ସମୀକରଣ ସମାଧାନ ହୋଇଛି.
x=-6
ଭାରିଏବୁଲ୍‌ x 5 ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ.
\left(x+7\right)x+\left(x-5\right)\times 6=12x
ଭାରିଏବୁଲ୍‌ x ମୂଲ୍ୟଗୁଡିକ -7,5 ମଧ୍ୟରୁ କୌଣସିଟି ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ ଯେହେତୁ ଶୂନ୍ୟ ଦ୍ୱାରା ବିଭାଜନ ନିର୍ଦ୍ଧାରିତ ହୋଇନାହିଁ. ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱକୁ \left(x-5\right)\left(x+7\right) ଦ୍ୱାରା ଗୁଣନ କରନ୍ତୁ, x-5,x+7,\left(x-5\right)\left(x+7\right) ର ଲଘିଷ୍ଠ ସାଧାରଣ ଗୁଣିତକ.
x^{2}+7x+\left(x-5\right)\times 6=12x
x+7 କୁ x ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+7x+6x-30=12x
x-5 କୁ 6 ଦ୍ୱାରା ଗୁଣନ କରିବା ପାଇଁ ବିତରଣାତ୍ମକ ଗୁଣଧର୍ମ ବ୍ୟବହାର କରନ୍ତୁ.
x^{2}+13x-30=12x
13x ପାଇବାକୁ 7x ଏବଂ 6x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+13x-30-12x=0
ଉଭୟ ପାର୍ଶ୍ୱରୁ 12x ବିୟୋଗ କରନ୍ତୁ.
x^{2}+x-30=0
x ପାଇବାକୁ 13x ଏବଂ -12x ସମ୍ମେଳନ କରନ୍ତୁ.
x^{2}+x=30
ଉଭୟ ପାର୍ଶ୍ଵକୁ 30 ଯୋଡନ୍ତୁ. ଯାହାକିଛି ସହିତ ଶୂନ୍ୟ ଯୋଗ ହେଲେ ସେହି ସଂଖ୍ୟା ମିଳିଥାଏ.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=30+\left(\frac{1}{2}\right)^{2}
\frac{1}{2} ପ୍ରାପ୍ତ କରିବା ପାଇଁ, x ଟର୍ମ୍‌‌ର ଗୁଣାଙ୍କ, 1 କୁ, 2 ଦ୍ୱାରା ବିଭକ୍ତ କରନ୍ତୁ. ତାପରେ ସମୀକରଣ ଉଭୟ ପାର୍ଶ୍ୱରେ \frac{1}{2} ର ବର୍ଗ ଯୋଡନ୍ତୁ. ଏହି ପଦକ୍ଷେପ ସମୀକରଣର ବାମ ହାତ ପାର୍ଶ୍ୱକୁ ଏକ ଯଥାର୍ଥ ବର୍ଗରେ ପରିଣତ କରିଥାଏ.
x^{2}+x+\frac{1}{4}=30+\frac{1}{4}
ଭଗ୍ନାଂଶର ଉଭୟ ଲବ ଓ ହରର ବର୍ଗ ବାହାର କରିବା ଦ୍ୱାରା \frac{1}{2} ବର୍ଗ ବାହାର କରନ୍ତୁ.
x^{2}+x+\frac{1}{4}=\frac{121}{4}
30 କୁ \frac{1}{4} ସହ ଯୋଡନ୍ତୁ.
\left(x+\frac{1}{2}\right)^{2}=\frac{121}{4}
ଗୁଣନୀୟକ x^{2}+x+\frac{1}{4}. ସାଧାରଣତଃ, ଯେତେବେଳେ x^{2}+bx+c ଏକ ପୂର୍ଣ୍ଣ ବର୍ଗ ଅଟେ, ଏହାକୁ ସର୍ବଦା \left(x+\frac{b}{2}\right)^{2} ଭାବେ ଗୁଣନୀୟକ କରାଯାଇପାରିବ.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱର ବର୍ଗମୂଳ ନିଅନ୍ତୁ.
x+\frac{1}{2}=\frac{11}{2} x+\frac{1}{2}=-\frac{11}{2}
ସରଳୀକୃତ କରିବା.
x=5 x=-6
ସମୀକରଣର ଉଭୟ ପାର୍ଶ୍ୱରୁ \frac{1}{2} ବିୟୋଗ କରନ୍ତୁ.
x=-6
ଭାରିଏବୁଲ୍‌ x 5 ସହିତ ସମାନ ହୋଇପାରିବ ନାହିଁ.